Alcohols & Carboxylic Acids

Question Paper 1

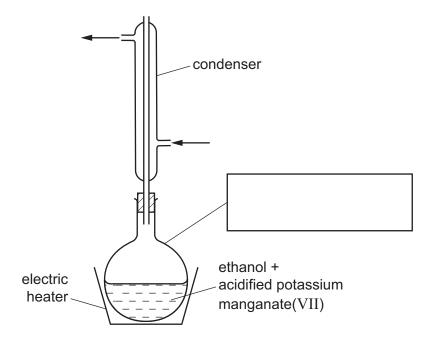

Level	IGCSE
Subject	Chemistry
Exam Board	CIE
Topic	Organic Chemistry
Sub-Topic	Alcohols & Carboxylic Acids
Paper Type	Alternative to Practical
Booklet	Question Paper 1

Time Allowed: 41 minutes

Score: /34

Percentage: /100

1 The diagram shows the apparatus used to separate a mixture of water, boiling point 100 °C, and ethanol, boiling point 78 °C.


......[2]

(e) Why would it be better to use an electrical heater instead of a Bunsen burner to heat the water

and ethanol mixture?

[Total: 7]

 $\hbox{\bf 2} \qquad \hbox{\bf Ethanol was reacted with hot acidified potassium manganate} (\quad VII) \ \hbox{\bf solution using the apparatus below. Ethanoic acid was formed}.$

(a)	Complete the box to identify the piece of apparatus labelled.	[1]
(ii)	Label the arrows.	[1]
(b)	Suggest and explain why an electric heater is used to heat this reaction and not a Bunsen burner.	
(ii)	Suggest why a condenser is necessary.	[2]
		[1]

(c) Complete the table to show the difference in smell between ethanol and ethanoic acid.

	smell
ethanol	
ethanoic acid	

[2]

A student investigated the reaction between two different solids, **C** and **D**, and excess dilute hydrochloric acid.

Five experiments were carried out.

(a) Experiment 1

A measuring cylinder was used to pour 30 cm³ of dilute hydrochloric acid into a polystyrene cup. The temperature of the dilute hydrochloric acid was measured. 1 g of solid **C** was added to the dilute hydrochloric acid and the mixture stirred with a thermometer. The maximum temperature reached by the liquid mixture was measured.

(b) Experiment 2

The polystyrene cup was emptied and rinsed with water. Experiment 1 was repeated using 2 g of solid **C**.

(c) Experiments 3 and 4

Experiment 2 was repeated using 3 g and then 5 g of solid C.

Use the thermometer diagrams to record the results in the table below.

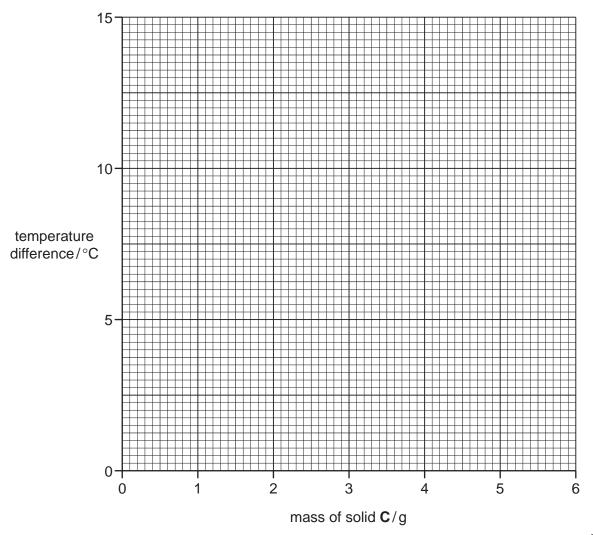
Complete the final column in the table.

experiment	mass of solid C	thermometer diagram	initial temperature of acid/°C	thermometer diagram	maximum temperature reached/°C	temperature difference /°C
1		30 -25 -20		30 -25 -20		
2		25		35 -30 -25		
3		30 -25 -20		35		
4		30 -25 -25		35 -30 -25		

(d) Experiment 5

Experiment 1 was repeated using solid **D**. Use the thermometer diagrams to record the results in the spaces below.

initial temperature of acid


final temperature of liquid mixture

initial temperature of dilute hydrochloric acid =°C

final temperature of liquid mixture =°C

temperature change =°C [2]

(e) Plot the results for Experiments 1, 2, 3 and 4 on the grid and draw a straight line graph.

www.igexams.com

(f)	(i)	From your graph , deduce the temperature of the solution when 6g of solid C is added to 30 cm³ of dilute hydrochloric acid. Show clearly on the grid how you worked out your answer.
		°C [2]
	(ii)	From your graph , deduce the mass of solid $\bf C$ that would give a temperature rise of 9 °C when added to $30\rm cm^3$ of dilute hydrochloric acid.
		[2]
(g)	Wh	at type of chemical process occurs when solid D reacts with dilute hydrochloric acid?
		[1]
(h)	•	ggest the effect on the results if Experiment 3 was repeated using 60 cm ³ of dilute rochloric acid.
		[2]
(i)	Pre	dict the temperature of the solution in Experiment 4 after 1 hour. Explain your answer.
		[2]
(j)		en carrying out the experiments, what would be one advantage and one disadvantage aking the temperature readings after exactly one minute?
	adv	antage
	disa	advantage
		[2]
		[Total: 20]