Acids, Bases and Salts Question Paper 4

Level	IGCSE
Subject	Chemistry
Exam Board	CIE
Topic	Acids, Bases and Salts
Sub-Topic	
Paper Type	Alternative to Practical
Booklet	Question Paper 4

Time Allowed:	63 minutes
Score:	$/ 52$
Percentage:	$/ 100$

1 A student investigated the reaction between two different solutions of deep purple potassium manganate(VII), \mathbf{A} and \mathbf{B}, and an acidic solution of hydrogen peroxide.

Three experiments were carried out.

Experiment 1

A burette was filled with the solution A of potassium manganate(VII) up to the $0.0 \mathrm{~cm}^{3}$ mark. Using a measuring cylinder, $25 \mathrm{~cm}^{3}$ of colourless hydrogen peroxide solution was poured into the conical flask.

The potassium manganate(VII) solution A was added slowly to the flask, and shaken to mix thoroughly. Addition of potassium manganate(VII) solution was continued until there was a permanent pink colour in the contents of the flask.
(a) Use the burette diagram to record the volume in the table of results and complete the column.

final reading

Experiment 2

Experiment 1 was repeated using the solution B of potassium manganate(VII) instead of solution A.
(b) Use the burette diagrams to record the volumes in the table of results and complete the table.

initial reading

final reading

	experiment 1	experiment 2
final reading $/ \mathrm{cm}^{3}$		
initial reading $/ \mathrm{cm}^{3}$		
difference $/ \mathrm{cm}^{3}$		

Experiment 3

To a little of the hydrogen peroxide solution in a test-tube, manganese(IV) oxide was added.
Rapid effervescence was observed and a glowing splint relit.
(c) Identify the gas given off in Experiment 3.
\qquad
(d) (i) What colour change was observed when potassium manganate(VII) solution was added to the flask?
from
to
(ii) Why was an indicator not added to the flask?
\qquad
(e) (i) In which experiment was the greatest volume of potassium manganate(VII) solution used?
\qquad
(ii) Compare the volumes of potassium manganate(VII) used in Experiments 1 and 2.
\qquad
(iii) Suggest an explanation for the difference in volumes.
\qquad
\qquad
\qquad
(f) If Experiment 2 was repeated using $12.5 \mathrm{~cm}^{3}$ of the hydrogen peroxide solution, what volume of potassium manganate(VII) solution would be needed to react completely? Explain your answer.
\qquad
\qquad
(g) Give one advantage and one disadvantage of using a measuring cylinder for the hydrogen peroxide solution.
advantage \qquad
disadvantage

2 A student prepared a sample of potassium nitrate by neutralising nitric acid using potassium hydroxide solution.
$25.0 \mathrm{~cm}^{3}$ of nitric acid was poured into a conical flask. Potassium hydroxide was added a little at a time from a burette as shown below.

After each addition of potassium hydroxide solution the pH was measured with a pH meter and the values recorded in the table of results.

volume of potassium hydroxide solution added $/ \mathrm{cm}^{3}$	pH value
5.0	1.2
10.0	1.4
15.0	2.6
20.0	2.0
24.0	2.7
24.5	3.0
25.5	11.0
26.0	11.3
30.0	12.0
40.0	13.2

You are going to draw a graph to find the volume of potassium hydroxide solution required to neutralise the $25.0 \mathrm{~cm}^{3}$ of nitric acid.
(a) Plot the results on the grid below and draw a smooth line graph.

[3]
(b) Which point appears to be inaccurate?
(c) (i) Use your graph to find the pH of the solution when $35.0 \mathrm{~cm}^{3}$ of potassium hydroxide was added.
\qquad
(ii) Use your graph to find the pH of $25.0 \mathrm{~cm}^{3}$ of nitric acid.

Show clearly on the grid how you obtained your answer.
(d) (i) What is the pH of the solution when all of the nitric acid has just been neutralised?
\qquad
(ii) What volume of potassium hydroxide was required to neutralise $25.0 \mathrm{~cm}^{3}$ of nitric acid?
\qquad
(e) Describe how the student should modify the experiment to obtain pure crystals of potassium nitrate.
\qquad
\qquad
\qquad
\qquad
\qquad

3 Seawater contains sodium chloride and other salts.
Plan an experiment to find the mass of salts in $1 \mathrm{dm}^{3}$ of seawater.
You will be provided with a small bottle of seawater.
You should include details of the method and any apparatus used.
$\left(1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}\right.$)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 A student investigated the reaction of aqueous sodium hydroxide with two different acids, acid \mathbf{C} and acid \mathbf{D}.

Two experiments were carried out.

Experiment 1

By using a measuring cylinder, $20 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide was poured into a conical flask and the initial temperature of the solution was measured.

A burette was filled with acid \mathbf{C} up to the $0.0 \mathrm{~cm}^{3}$ mark.
$5 \mathrm{~cm}^{3}$ of acid \mathbf{C} was added to the sodium hydroxide in the flask. The temperature of the mixture was measured.

Further $5 \mathrm{~cm}^{3}$ portions of acid \mathbf{C} were added to the mixture in the flask, stirring with the thermometer until a total volume of $30 \mathrm{~cm}^{3}$ of acid \mathbf{C} had been added. The temperatures after each $5 \mathrm{~cm}^{3}$ portion had been added were measured.
(a) Use the thermometer diagrams to record the temperatures in the table of results.

Table of results

volume of acid \mathbf{C} added/cm ${ }^{3}$	thermometer diagrams	temperature $/{ }^{\circ} \mathrm{C}$
0	期	
5		
10		
15		
20	路	
25		
30	1	

Experiment 2

The burette was emptied and rinsed with water. Experiment 1 was repeated using acid \mathbf{D}.
(b) Use the thermometer diagrams to record the temperatures in the table of results.

Table of results

volume of acid D added/cm ${ }^{3}$	thermometer diagrams	temperature $/{ }^{\circ} \mathrm{C}$	
0	$\\|_{=20}^{30}$		
5			
10			
15			
20			
25			
30			

(c) Plot the results for Experiments 1 and 2 on the grid and draw two smooth line graphs. Clearly label your graphs.

(d) From your graph, deduce the temperature of the mixture when $3 \mathrm{~cm}^{3}$ of acid \mathbf{C} reacted with sodium hydroxide in Experiment 1.

Show clearly on the graph how you worked out your answer.
(e) (i) Which experiment produced the larger temperature change?
\qquad
(ii) Suggest why the temperature change is greater in this experiment.
\qquad
\qquad
\qquad
(f) Why was the burette rinsed with water in Experiment 2?
\qquad
\qquad
(g) Predict the temperature of the reaction mixture in Experiment 2 after 1 hour. Explain your answer.
\qquad
\qquad
\qquad

