Energy, Work and Power

Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	General Physics
Sub-Topic	Energy, Work and Power
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed: 59 minutes

Score: /49

Percentage: /100

				[Total: 9]
		(iii)	higher temperature increase OR calculate mean of (100) readings small measurements less accurate owtte	M1 A1
		(ii)	thermal energy transferred to something specific e.g. air/tube/stopper/thermometer/surroundings/environment OR small spheres lost before/after weighing OR not all the spheres fall the same distance	B1
	(b)	(i)	initial temperature (of metal) OR final temperature (of metal) OR temperature change (of metal)	В1
		(ii)	(k.e. OR 2.7 =) $\frac{1}{2}mv^2$ OR $\frac{1}{2} \times 0.15v^2$ (v^2 =) 36 6.0 m/s	C´ C´ A´
2	(a	(i)	(g.p.e. =) mgh OR $0.15 \times 10 \times 1.8$ 2.7 J ignore minus sign	C′ A′
				[Total: 8
			consistent with above mark: in magnetic field / between magnetic poles / cutting magnetic field OR in coil/near wire	B ²
	(c)		rotation/movement of wire/coil OR rotation/movement of magnet	B ²
	(b)		use of $\rho = m \div V$ in any form OR $m \div V$ ($\rho = 6.72 \div 5.6 =)$ 1.2 kg/m ³	C ²
			0.08 × candidate's (a)(i) correctly evaluated	A
		(ii)	efficiency = output (power) ÷ input (power) OR <u>useful power</u> ÷ input (power)	C.
1	(a	(i)	KE = $\frac{1}{2}m\sqrt{2}$ in any form OR $\frac{1}{2}m\sqrt{2}$ (KE = 24.5 × 6.7 =) 164 J OR 160 J	C ²

www.igexams.com

3	(a	(i)	1.	(loss of P.E. =) mgh OR $92 \times 10 \times 1500$ 1.38×10^6 J correct use of mgh with $h = 500$ or 2000 gains 1 mark only	C1 A1
		(ii)	2.	(K.E. =) $\frac{1}{2} mv^2$ OR $\frac{1}{2} \times 92 \times 52^2$ 1.244 × 10 ⁵ J at least 2 sig. figs	C1 A1
	(a)	((wo	erence is due to: ork done in overcoming) air resistance/drag energy converted to/lost as heat (by air resistance/drag)	В1
	(b)		incr	reases	B1
		(ii)	920) N	B1
					[Total 7]
4	(a)	(i)		=) ρV OR 1000 × 1.8 × 10 ⁶ × 10 ⁹ kg	C1
		(ii)	(g.p	o.e. =)mgh OR $1.8 \times 10^9 \times 10 \times 350$ (e.c.f. from (a)(i)) $\times 10^{12}$ J (e.c.f. from (a)(i))	C A
		(iii)	•	=)E/t OR 6.3×10^{12} /7 OR 6.3×10^{12} /(7×60) OR 6.3×10^{12} /(7×3600) f from (a)(i)(ii))	C1
				× 10 ⁸ W (e.c.f. from (a)(i)(ii))	Α
	(b)			tinuously regenerated / not used up / everlasting supply IORE used again / recycled / can be renewed	B1
		(ii)	-	two of: biomass/geothermal/solar/ tidal/wave/wind energy/wood T nuclear/light)	[9]

5	(a	(i)	(gravitational) potential energy to kinetic energy	B1	
		(ii)	chemical energy to (gravitational) potential energy	B1	
			reference in (i) or (ii) to heat/thermal/internal energy produced OR work done against air resistance or friction	B1	
	(b)	(i)	(K.E. =) $\frac{1}{2}mv^2$ OR $0.5 \times 940 \times 16^2$ 1.2×10^5 J	C1 A	
		(ii)	in words or symbols $Q = mc\theta$ OR $\theta = Q/mc$ 1.203 × 10 ⁵ = 4.5 × 520 × θ OR θ = 1.203 × 10 ⁵ / (4.5 × 520) 51°C or K	C1 C1 A1	
				[Tota	ıl: 8]
6	(a		D. =) <i>F</i> × <i>d</i> or 640 × 3.5 40 J to 2 or more sig. figs.	C1 A1	[2]
	(b)	(E =) VIt or 75 × 25 × 4.0 or 75 × 100 (accept (E =) VQ and Q = It) 7500 J			
		(ii)	(efficiency =) $\frac{\text{(useful)energy output}}{\text{energy input}}$ (× 100%) or 2240/7500 (accept power for energy) (e.c.f. from 3(a)(i) or 3(b)(i)) 0.3 or 0.30 or 0.299 or 30% or 29.9% (e.c.f. from 3(a)(i) or 3(b)(i))	C1 A1	
	(c) any two from: electrical heating friction W.D. lifting suppor sound				
					[2]
					l: 8]