# Forces ( $\mathrm{F}=\mathrm{ma} /$ Resultant forces) 

## Mark Scheme 2

| Level | IGCSE |
| :--- | :--- |
| Subject | Physics |
| ExamBoard | CIE |
| Topic | General Physics |
| Sub-Topic | Forces F=m/a/ Resultant forces |
| Paper Type | (Extended) Theory Paper |
| Booklet | Mark Scheme 2 |

## Time Allowed:

Score: 82 minutes

Percentage:
/100

| Question | Answer | Mark |
| :---: | :---: | :---: |
| 1(a)(i) | ( $\mathrm{P}=$ ) hdg OR $1.5 \times 850 \times 10$ <br> OR <br> $\mathrm{mg} /$ area of base OR $850 \times 2.4 \times 1.5 \times 1.5 \times 10 /(2.4 \times 1.5)$ 13000 Pa or $\mathrm{N} / \mathrm{m}^{2}$ | $\begin{array}{r} \text { C1 } \\ \text { (C1) } \\ \text { A1 } \end{array}$ |
| (a)(ii) | $\begin{aligned} & \mathrm{P}=\mathrm{F} / \mathrm{A} \text { OR }(\mathrm{F}=) \text { PA OR } 12750 \times 1.5 \times 2.4 \text { OR } 12750 \times 3.6 \\ & 46000 \mathrm{~N} \\ & \text { OR } \\ & (\text { (Force }=\text { ) weight of oil }=\mathrm{mg}=2.4 \times 1.5 \times 1.5 \times 850 \times 10 \\ & 46000 \mathrm{~N} \end{aligned}$ | C1 <br> A1 <br> (C1) <br> (A1) |
| (b) | $\begin{aligned} & (46000 / 10=) 4600 \mathrm{~kg} \\ & \text { OR } \mathrm{m}=\mathrm{Vd}=(2.4 \times 1.5 \times 1.5) \times 850=4600 \mathrm{~kg} \end{aligned}$ | B1 |
| (c)(i) | (density of brass) greater than that of oil/ $850 \mathrm{~kg} / \mathrm{m}^{3}$ OR brass denser than oil | B1 |
| (c)(ii) | (It won't sink as average) density of wood + key less than density of oil | B1 |
|  |  | Total: 7 |

2 (a (i) acceleration OR increasing speed ..... C1
constant acceleration OR constant rate of increase in speed ..... A1
(ii) decreasing acceleration OR decreasing rate of increase in speed NOT deceleration ..... B1
(b) mention of air resistance AND weight (of object) / force due to gravity ..... B1
acceleration at start (of fall) is acceleration of gravity $/ 10 \mathrm{~m} / \mathrm{s}^{2} /$ a maximum $/ \mathrm{g}$ OR acceleration decreases (as it falls) ..... B1
air resistance increases as speed increases/as it accelerates ..... B1
acceleration zero/terminal velocity/constant speed/maximum speed when air resistance $=$ weight ..... B1
[Total: 7]
3 (a point marked $P$ (on line or time axis) at $t \geq 2.0 \mathrm{~s}$B1
(b) attempt at gradient $\operatorname{OR}(\mathrm{a}=) \Delta \mathrm{v} / \mathrm{t}$ OR $(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ OR $240(-0) / 2.0$ OR division of correct points on graph ..... C1
$120 \mathrm{~m} / \mathrm{s}^{2}$ ..... A1
(ii) suggestion of area (under graph) in words or formula or numbers
OR $0.5(120+240) \times 1.0$ OR $[(120 \times 1.0)+(0.5 \times 120 \times 1.0)]$ ..... C1
180 m ..... A1
(c) mass of sled changes/decreases OR fuel used up ..... B1
(ii) any vector quantity other than force $\quad$ B1
(b) $\mathrm{F}=\mathrm{ma}$ in any form $\mathrm{OR}(\mathrm{a}=) \mathrm{F} / \mathrm{m}$ $50000 / 290000$ OR 50/290 $\mathrm{a}=0.17 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\quad 1 \mathrm{~cm}: 20000 \mathrm{~N} / 20 \mathrm{kN}$
(ii) triangle completed

230000 N OR 230 kN in range $220000 \mathrm{~N}-240000 \mathrm{~N} / 220 \mathrm{kN}-240 \mathrm{kN}$
by calculation: $110^{\circ}$
OR by measurement: $108^{\circ}-112^{\circ}$
(ii) limit of proportionality
(b) (WD =) $1 / 2 F \times d$ OR $F_{\text {ave }} \times d$ OR $6.0 \times 0.030$ OR $18(\mathrm{~J})$

C1
0.18 J A1
(c) (i) $(x=) 2.0(\mathrm{~cm}) \mathrm{OR} 6.0-4.0$ OR $F=k x$ OR $4.0(\mathrm{~N} / \mathrm{cm})$

C1
$12.0 \times 2.0 / 3.0$ OR $4.0 \times 2.0$ OR $8.0(\mathrm{~N}) \quad \mathrm{C} 1$ 0.80 kg OR 800 g A
(ii) $\quad(e=) 1.0(\mathrm{~cm})$ OR $(\Delta e=-) 1.0(\mathrm{~cm}) \quad \mathrm{C} 1$ $4.0 \mathrm{~N} \quad$ OR $4.0 \mathrm{~N} \quad$ A1

## www.igexams.com

## 6

(a $3^{\text {rd }}$ box only indicated, reverses direction
(b) straight line up/down page B1
arrow pointing down page B1
(ii) to the right or left e.c.f. (b)(i) B1
to the right e.c.f. (b)(i) B1
(c) $F=m a$ in any form or $F / m$ symbols, words or numbers

OR final answer $6 \times 10^{-4} \mathrm{~m} / \mathrm{s}^{2}$
$\left(a=0.21 / 0.35=0.6 \mathrm{~m} / \mathrm{s}^{2}\right.$
(ii) B marked between $t 6.0 \mathrm{~s}$ and $t=7.0 \mathrm{~s} \quad$ B
(iii) C marked on clearly curved section before $t=14 \mathrm{~s} \quad$ B
(b) (i) $(a=) \Delta v / t$ OR $30 / 1$ OR 15/0.5 etc. OR triangle on graph/tangent (ignore - sign) $25 \mathrm{~m} / \mathrm{s}^{2}<\mathrm{a}<35 \mathrm{~m} / \mathrm{s}^{2}$
(ii) $(F=) m a$ OR $750 \times 30$ e.c.f. from (b)(i) C1
$2.2 / 2.25 / 2.3 \times 10^{4} \mathrm{~N}$ e.c.f. from (b)(i)
(c) acceleration/rate of change of speed is zero OR speed is constant OR air resistance/backwards force equal and opposite to driving/forwards force
(a (i) (increase in g.p.e. $=m g h$ OR $65 \times 10 \times 8=) 5200 \mathrm{~J}$
(ii) EITHER
$\begin{array}{ll}\text { k.e. gained }=\text { g.p.e. lost } & \text { C1 } \\ 1 / 2 m v^{2}=5200 \text { in any form } & \text { C1 } \\ v^{2}=5200 /(0.5 \times 65) \text { OR } 160 & \text { C1 }\end{array}$
$v=12.6 \mathrm{~m} / \mathrm{s}$ e.c.f. (a)(i) A1
OR
$v^{2}=u^{2}+2 a s / v^{2}=2 g h$
$v^{2}=2 \times 10 \times 8$
$v^{2}=160$
$v=12.6 \mathrm{~m} / \mathrm{s}$ e.c.f. (a)(i)
(b) speed is the same

## EITHER

loss in g.p.e. is the same
B1
$\begin{array}{ll}\text { k.e. gained is the sa } & \text { B1 }\end{array}$
OR
acceleration is the same
distance fallen is the same

## [Total: 8]

(a (i) $v=u+a t \mathrm{OR}(a=)(v-u) / t \mathrm{OR} 24=a \times 60 \mathrm{OR} 24 / 60$ $0.4(0) \mathrm{m} / \mathrm{s}^{2}$
(ii) $(F=) m a \mathrm{OR} 7.5 \times 10^{5} \times 0.40$
(b) (i) in words or symbols $(P=) W / t$ OR $\mathrm{Fxd} / \mathrm{t}$ OR Fv

| OR $7.2 \times 10^{4} \times 24 / 1$ OR OR $7.2 \times 10^{4} \times 24$ | C1 |
| :--- | :--- |
| $1.7 \times 10^{6} \mathrm{~W}$ | A1 |

(ii) gravitational/potential energy of train has to be increased OR force acts down the slope/backward force acts (on train)
B1
(for the same distance moved) more work done has to be done OR energy
has to be provided (by the engine) in the same time (so needs more power) B1

