Forces - Scalars/Vectors Mark Scheme 1

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	General Physics
Sub-Topic	Forces Sclaras/Vectors
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 1

Time Allowed:	40 minutes
Score:	$/ 33$
Percentage:	$/ 100$

1 (a (i) any scalar quantity other than mass
(ii) any vector quantity other than force
(b) $\mathrm{F}=\mathrm{ma}$ in any form $\mathrm{OR}(\mathrm{a}=) \mathrm{F} / \mathrm{m}$

50000/290000 OR 50/290
$\mathrm{a}=0.17 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\quad 1 \mathrm{~cm}: 20000 \mathrm{~N} / 20 \mathrm{kN}$
(ii) triangle completed B1
230000 N OR 230 kN in range $220000 \mathrm{~N}-240000 \mathrm{~N} / 220 \mathrm{kN}-240 \mathrm{kN}$
by calculation: 110°
OR by measurement: $108^{\circ}-112^{\circ}$

2 (a 2 vectors correct direction AND relative length by eye
(b) (i) (moment $=$) force \times distance C1 $($ moment $=11000 \times 1.8=) 20 \mathrm{kNm}$ A1
(ii) (moment of weight $=19000 \times 1.25=) 24(\mathrm{kNm})$ B1
correct statement based on two moments seen B1
3 (a velocity has direction/is a vector AND speed doesn't/isn't/is a scalar
(b) horizontal arrow to right AND touching parachutist (when extended) B1
arrow/line horizontal AND arrow / line vertical AND making two sides of triangle OR rectangle
(ii) correct diagonal (i.e. top left to bottom right)
$10.4-10.5 \mathrm{~m} / \mathrm{s}$

$$
51-55^{\circ} \text { to horizontal OR } 35-39^{\circ} \text { to vertical (NOT more than } 2 \text { sig.figs.) }
$$

(iii) $1 / 2 m v^{2}$ OR $0.5 \times 85 \times 10.5^{2}$ (e.c.f. from (b)(ii))
$0.5 \times 85 \times 10.5^{2}$ (e.c.f. from (b)(ii))
$4.7 / 4.69 / 4.685625 \times 10^{3} \mathrm{~J}$ (e.c.f. from (b)(ii))
A

[9]

4 (a (i) (both have) magnitude o.w.t.t.e. B1
(only) vector has direction
B1
(ii) valid example of vector quantity
e.g. displacement, weight, force, veloci
valid example of scalar quantity
e.g. distance, length, time, pressure, mass, energy accept heig
(b) each vector to scale and correct angle,
$\begin{array}{ll}\text { larger vector clockwise by acute angle from smaller } & \text { B1 }\end{array}$
$\begin{array}{ll}\text { parallelogram or correct two sides of triangle } & \text { B1 }\end{array}$
resultant drawn correct, from his parallelogram or his sides of triangle M1
magnitude $4.5-5.4 \times 10^{4} \mathrm{~N}$, accept 1 sig. fig. if exact
AND direction $4-12^{\circ}$ from $3 \times 10^{4} \mathrm{~N}$ force OR $8-16^{\circ}$ from $2 \times 10^{4} \mathrm{~N}$ force accept values from diagram

