Forces - Moments/Centre of Mass
 Mark Scheme 1

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	General Physics
Sub-Topic	Forces moments/centre of mass
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 1

Time Allowed:	65 minutes
Score:	$/ 54$
Percentage:	$/ 100$

(a $\quad 2$ vectors correct direction AND relative length by eye B1
correct triangle OR rectangle with resultant on correct diagonal B1
7.2 kN tolerance $7.0-7.4 \mathrm{kN}$ B1
(b) (i) (moment $=$) force \times distance C1
(moment $=11000 \times 1.8=$) 20 kNm A1
(ii) (moment of weight $=19000 \times 1.25=) 24(\mathrm{kNm})$ B1correct statement based on two moments seenB1
Resultant/net/total force B1
Resultant/net/ total turning effect/moment/torque/couple B1
(b) (i) 1. $(240 \times 1.2=) 290(\mathrm{Nm})$
2. $F \times 3.2$
(ii) $F \times 3.2=288$ C190 NA1
(iii) To balance the weight B1OR to make resultant moment zeroOR to keep the ladder in (vertical) equilibriumOR because there is a downward forceOR because the ladder is pressing on the groundOR otherwise the ladder would fall / sink (into the ground)

3 (a (immediately below/above the/at) 50 cm mark OR at pivot
(b) (i) anticlockwise moment = clockwise moment OR $45 \times 0.40=25 \times W \quad$ C1
0.72 N
(ii) 0.072 kg OR 72 g e e.c.f from (b)(i)
(c) (i) no net moment OR two moments cancel
moment due to weight of rule cancels moment due to weight of apple
(ii) weight of the rule/it is bigger
(b) (i) $W=P+Q$ in any form
$\begin{array}{ll}\text { OR (total) upward force }=(\text { total }) \text { downward force } & \text { B1 }\end{array}$

$$
\begin{aligned}
& P=W-Q \text { so } P \text { must be less than } W \\
& \text { OR } P \text { is not the only upward force }
\end{aligned}
$$

(ii) $P \times$ its distance (from C$)=W \times$ its distance (from C)

OR P and W have equal moments (about C)

OR clockwise moment = anticlockwise moment

$$
P \text { is farther from C/pivot (than } W \text { so } P \text { must be less than } W \text {) B1 }
$$

(c) clockwise moment $=75 \times 0.24 \quad$ C1
anticlockwise moment $=F \times 0.75 \quad$ C1
(moments equated gives $F=) 24 \mathrm{~N} \quad \mathrm{~A} 1$

5
(a $85000 \mathrm{~N}($ accept 83300 N$)$
(b) ($\quad(P=) F / A$ OR $85000 / 3.4$ OR $85000 / 3.4 \times 2$ OR $85000 / 6.8$ (e.c.f. from (a)(i))
$1.2 / 1.25 / 1.3 \times 10^{4} \mathrm{~Pa}($ e.c.f. from $(\mathrm{a})(\mathrm{i}))$
(ii) larger area M1
smaller pressure
(c) (i) (measure of) turning effect OR $F \times x \quad$ B1
$\begin{array}{ll}\text { (ii) no resultant/net force } & \text { B1 } \\ \text { no resultant/net turning effect/moment } & \text { B1 }\end{array}$
7 (a (i) 3 appropriate examples: e.g. spanner, scissors, tap etc. -1e.e.o.o. B2
(ii) there is a resultant force OR more force down than up B1
there is a resultant moment OR clockwise moment is not equal to anticlockwise moment B1
(b) (i) $F \times 0.5=12 \times 0.3$ C17.2 NA1
(ii) weight has no moment about centre of rod/has no perpendicular distance from centre of rod
OR weight acts at centre of rod/pivot/centre of mass

