Forces-Hooke's law

Mark Scheme 1

Level	IGCSE		
Subject	Physics		
ExamBoard	CIE		
Topic	General Physics		
Sub-Topic	Forces Hooke's law		
Paper Type	(Extended) Theory Paper		
Booklet	Mark Scheme 1		

Time Allowed: 53 minutes

Score: /44

Percentage: /100

1 (a (i) Straight line through origin В1 (ii) Strain (energy) OR elastic (energy) В1 (b) Use of $1/2\text{mv}^2$ C1 $0.5 \times 2.5 \times v^2 = 0.48$ C1 $v^2 = 0.48/(0.5 \times 2.5)$ OR $v^2 = 0.384$ C1 $v = 0.62 \, \text{m/s}$ Α1 [Total: 6] В1 (a strain / elastic (potential) (energy) **(b) (i)** (KE =) $\frac{1}{2}$ m v^2 in any form C1 1200 J **A1** (ii) (G)PE (gained) = KE (lost) in any form C1 (G)PE = mgh OR $h = PE \div mg$ in any form C1 1.8 m e.c.f. from (b)(i) Α1 (iii) friction with air OR air resistance OR thermal energy / heat produced/lost В1 (c) (i) limit of proportionality В1 (ii) Hooke's law B1

3 (a	(i)	straight line bet	ween	A and B	В	1
	(ii)	limit of proportion	onality	1	В	1
(b) (W 0.1	· / L	R F _{ave}	× d OR 6.0 × 0.030 OR 18 (J)	C ²	-
(0	;) (i)	(x =) 2.0 (cm) C $12.0 \times 2.0/3.0 $ 0.80 kg OR 800	C° C° A	-		
	(ii)			$(\Delta e = -)1.0 \text{ (cm)}$ 4.0 N	C ⁻ A ⁻	
					[Total: 9]

4	(a	(i)	Hooke's Law	B1	[1]
		(ii)	straight line (graph) / constant gradient through origin/(0,0) ignore through zero ignore extension proportional to load	B1 B1	[2]
	(b)		ved extension to graph with increasing gradient, condone decreasing T if any part of curve is vertical/horizontal or has negative gradient	В1	[1]
				[Tota	l: 4]
5	(a	OR OR OR	ension (of spring) proportional to load/force (applied) load/force (applied) proportional to extension force = constant × extension extension = constant × force F = kx in any form with symbols explained	B1	
	(b)	(graph is through the origin AND is a straight line/has a constant gradient	B1	
		(ii)	ii) $F = kx$ in any form OR $(k =) F/x$ use of a point anywhere on graph e.g. $50/20$ 2.5 N/mm OR $2500 N/m$	C1	
				A 3	
		(iii)	from 50 mm extension, graph curves with no negative gradient	В1	
		(iv)	straight line through origin with smaller gradient than graph shown finishing at more than 50 mm	B1	
				[Tota	l: 7]

					[Tota	ıl· 91
		(ii)	1. 2.	0.9 N (accept 0.8 N < value < 1.0 N) (a =) F/m or 0.90/0.12 (e.c.f. from 2(c)(i)) 7.5 m/s ² (e.c.f. from 2(c)(i))	C1 A1	[1] [2]
	(c)		0 (N) or zero or no net force etc. (ignore absent unit; wrong unit loses mark)	B1	[1]
		(ii)	_	adient or numbers from graph divided e.g. 4.5 ÷ 10 .5N/cm or 45N/m	C1 A	[2]
	(b)	(i)		it of proportionality or (the point where) proportionality between force and ension stops or Hooke's Law no longer obeyed (condone elastic limit)	B1	[1]
6	(a	(<i>W</i> =) <i>mg</i> or 0.25 × 10 or 250 × 10 or 2500 2.5 N				