www.igexams.com

Length \& Time Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	General Physics
Sub-Topic	Length \& Time
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed:	82 minutes
Score:	/68
Percentage:	$/ 100$

www.igexams.com

1
(a (density =) mass/volume
(b) water used in measuring/graduated cylinder
volume of water known or read/recorded/taken
place the coins in the water and read/record/take new level of water in cylinder
subtract readings
OR ALTERNATIVE METHOD:
pour water into displacement can to level of spout
place the coins/several coins in the water
collect overflow
measure volume of overflow water using measuring graduated cylinder
measure mass/weigh the coins used with balance/spring balance
(c) one from:
read measuring cylinder levels at bottom of meniscus
repeat volume measurement and find average
place eye level with surface in measuring cylinder (to avoid parallax error)
place coins one at a time to avoid air bubbles between coins
avoid splashing when adding coins to water
make sure coins are dry/clean
use narrow/small measuring cylinder
place containers on horizontal surface
check zero of balance/spring balance/scales
displacement can method: make sure dripping finishes before and after adding coins

www.igexams.com

(a (density =) mass/volume OR mass per unit volume OR m / V with symbols explained
(b) ($\mathrm{vol}=$) mass/density OR 60.7/2.70
$=22.48 \mathrm{~cm}^{3}$ to 2 or more sig. figs
(ii) $\quad V=A \times$ (average) thickness $O R$ thickness $=V / A$ OR 22.48 / (50×30)
(c) micrometer/screw gauge / (vernier/digital) callipers
(ii) check zero of device used / cut sheet into several pieces / detail of how to use device / fold sheet
measure thickness of sheet in different places OR measure thickness of several pieces together
calculate/obtain average thickness OR divide answer by number of measurements/ pieces/places
(a all points correctly plotted $\pm 1 / 2$ small square
(b) candidate's correct value with unit (± 0.2), (expect 1.2 N)
(ii) remains stationary / nothing happens / no acceleration NOT constant speed
(c) Correct data from candidates graph for ΔF and Δm, used in $\Delta F / \Delta m$
(d) $\quad F=m a$ in any form, letters, words
(ii) gradient =F/a OR gradient $=m \quad$ ignore $m=F / a \quad$ C1
candidate's (c) with correct unit
A1
(e) straight line of positive gradient

www.igexams.com

(a $\quad \Delta h=0.068 \mathrm{~m}$ C1use of mghC1
$0.054 \mathrm{~J} / \mathrm{Nm}$ A1
(b) $1 / 2 m v^{2}=$ candidate's (a) C1
$1.2 \mathrm{~m} / \mathrm{s}$ ecf from (a) A1
(c) (i) use of distance \div time C1
$=1.1 \mathrm{~m} / \mathrm{s}$ A1
(ii) air or wind resistance / friction / heat / thermal energyOR correct mention of experimental error e.g. width of cylinder
(a) (i) downward curve B1
initially horizontal at top and not vertical at bottom B1
(ii) force shown vertically down (accept leaning back a small amount) B1
(b) any two from:
same (times) / air resistance negligible / same acceleration B2
OR
times different B1
one has (more) air resistance B1
(c) (time =) 800/320 C1
2.5(s) C1
$(v=)$ at OR $10 \times$ candidate's t value C1

 \(25 \mathrm{~m} / \mathrm{s}\)B1
 (a decreases / braking / decelerating) $\begin{array}{ll}\text { constant / steady / nothing } & \text {) all } 3 \\ \text { increases / accelerate } & \text {) }\end{array}$ B1
(b) speed x time in any form, symbols, numbers or words OR any area under graph used or stated C1 $13(\mathrm{~m} / \mathrm{s})$ OR $24(\mathrm{~s})$ seen or used in correct context C1 312 m
(c) rate of change of speed OR gradient of graph OR 18/12
$18(\mathrm{~m} / \mathrm{s})$ OR $12(\mathrm{~s})$ seen or used in correct context C1 $1.5 \mathrm{~m} / \mathrm{s}^{2}$
(d) same gradient / slope OR equal speed changes in equal times OR
allow graph symmetrical
B1
(a (i) $(v-u) / t$ OR $\quad v / t$ OR $8 / 3$
$2.7 \mathrm{~m} / \mathrm{s}^{2}$
(ii) ma OR $42 \times$ answer from (i) OR $42 \times 8 / 3$ $110 / 112 \mathrm{~N}$ e.c.f.
(iii) (distance in $1^{\text {st }} 3$ secs $\left.=\right) 12 \mathrm{~m}$ OR (dist in last 3 secs =) 88 m use of area of trapezium OR area of "top" triangle $7.7 \mathrm{~m} / \mathrm{s}$
(b) longer time to top speed longer total time lower top speed lower finishing speed specific/all speeds lower (not speed decreases) less slope/less acceleration (in first section) greater slope/greater deceleration in $2^{\text {nd }}$ section

B1+B1
[Total: 9]

B a(i) outline, ruler pivoted (at centre), mass one side, rock other side quality set-up, each mass at(marked) point + labels
(ii) rod must be balanced before readings can be taken of record mass as 400 git distances to pivot from rock Bl Bl distance pinot to mass BI mass or $100 \times$ distance to pivot $=$ mass of rock \times distance rock to pivot
b put water in cylinder, read value insert rock until covered, read value difference in values is volume of rock
c density = mass/volume or 88/24

$$
\text { (accept } 3.6)
$$

BI
B1
2 Bi MR ${ }^{\text {* }}$
Ci
2 Al 2 QT 9

