Mass and weight

Question Paper 1

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	General Physics
Sub-Topic	Mass and weight
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 1

Time Allowed: 46 minutes

Score: /38

Percentage: /100

1 Fig. 3.1 shows an early water-powered device used to raise a heavy load. The heavy load rests on piston B.

Fig. 3.1 (not to scale)

Initially, a large weight of water in cylinder A pushes piston A down. This causes the left-hand end of the beam to move down and the right-hand end of the beam to move up. Piston B rises, lifting the heavy load.

(a) The weight of water in cylinder A is 80 kN.

Calculate the mass of water in cylinder A.

(b)	The density of water is 1000 kg/m ³ .
	Calculate the volume of water in cylinder A.
	volume =[2]
(c)	Piston A moves down a distance of 4.0 m.
	Calculate the gravitational potential energy lost by the water.
	loss of gravitational potential energy =[2]
(d)	The heavy load lifted by piston B gains 96 kJ of gravitational potential energy.
	Calculate the efficiency of the device.
	efficiency =[2]
	[Total: 8]

2	(a)	A w	vater tank has a rectangular base of dimensions 1.5m by 1.2m and contains 1440kg of er.
		Cal	culate
		(i)	the weight of the water,
			weight =[1]
		(ii)	the pressure exerted by the water on the base of the tank.
			pressure =[2]
	(b)	vie	. 5.1 shows two water tanks P and Q of different shape. Both tanks are circular when wed from above. The tanks each contain the same volume of water. The depth of water in the tanks is 1.4 m.
			1.4 m
			P Q
			Fig. 5.1
		(i)	The density of water is 1000kg/m^3 . The pressures exerted by the water on the base of the two tanks are equal.
			Calculate this pressure.
			pressure =[2]

(ii)	Equal small volumes of water are removed from each tank.
	State which tank, ${\bf P}$ or ${\bf Q}$, now has the greater water pressure on its base. Explain your answer.
	[2]
	[Total: 7]

3 Fig. 2.1 shows a uniform, rectangular slab of concrete ABCD standing upright on the ground. The slab has height 0.60 m, width 0.30 m and mass 18 kg. A force of 40 N acts horizontally to the left at B.

Fig. 2.1

(a) (i) Calculate the weight W of the concrete slab.

W	_	Г	1	1
v v	=			ı

(ii) The thickness of the slab is 0.040 m.

Calculate the pressure exerted by the slab on the ground.

(b) (i)	On Fig. 2.1, draw and label an arrow to show the weight W of the slab acting at its centre of mass. [1]
(ii)	Calculate
	1. the moment of the 40 N force about point D,
	moment = 2. the moment of <i>W</i> about point D.
	moment =[3]
(iii)	The ground is rough so that the slab does not slide.
	State and explain what happens to the slab as the horizontal force at B is gradually increased.
	[2]
	[Total: 9]

4 A large crane has a mass of 8500 kg. Fig. 4.1 shows the crane on a muddy building-site.

Fig. 4.1

(a) Calculate the weight of the crane.

- (b) The crane rests on two caterpillar tracks each of which has a contact area with the ground of $3.4\,\text{m}^2$.
 - (i) Calculate the pressure that the crane exerts on the ground.

	(ii)	As the crane driver walks towards the crane, he starts to sink into the mud. He lays a wide plank of wood on the mud and he walks along the plank.
		Explain why he does not sink into the mud when he walks along the plank.
		[2]
(c)		en the crane lifts a heavy load with its hook, the load exerts a moment on the ag-arm about the axle.
	(i)	Explain what is meant by moment of a force.
		[1]
	(ii)	Despite the moment exerted on the lifting-arm, the crane remains in equilibrium.
		State the two conditions required for any object to be in equilibrium.
		1
		2
		[2]
		[Total: 8]

5 Fig. 2.1 shows a mobile bird sculpture that has been created by an artist.

Fig. 2.1

M is the centre of mass of the bird sculpture, including its tail (but not including the counter-weight that will be added later). The mass of the bird and tail is 1.5 kg.

The bird sculpture is placed on a pivot.

The artist adds the counter-weight at the end E of the tail so that the bird remains stationary in the position shown.

(a) Calculate the mass of the counter-weight.

(b) The centre of mass of the sculpture with counter-weight is at the pivot.

Calculate the upward force acting at the pivot.

(c) The sculpture is rotated clockwise to the position shown in Fig. 2.2. It is held still, then carefully released.

Fig. 2.2

(i)	State whether the sculpture will stay in that position, rotate further clockwise or rotate back anticlockwise.
(ii)	Explain your answer to (i).
	[3]

[Total: 6]