www.igexams.com

Pressure

Mark Scheme 2

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	General Physics
Sub-Topic	Pressure
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 2

Time Allowed:	68 minutes
Score:	$/ 57$
Percentage:	$/ 100$

www.igexams.com

1 (a $\rho g h$ in symbols, words or numbers C1
700 Pa or $\mathrm{N} / \mathrm{m}^{2} \quad$ A1
(b) use of $F=p A \quad$ C1
14.7 N ecf from (a)

A1
(c) $(30.9-14.7=) 16.2 \mathrm{~N}$ OR evidence of calculation of resultant C 1
use of $a=F / m$
$5.24 \mathrm{~m} / \mathrm{s}^{2}$
(a) $\quad(P=) F / A$ words or symbols B1
(ii) 22500 Pa
(b) less pressure B1 less sinking
(c) any suggestion which involves increasing the area in contact with the ice e.g. snow shoes / sk

3 (a (i) ($\mathrm{P}=$) F/A in any form OR 1000/0.01
100000 Pa accept $\mathrm{N} / \mathrm{m}^{2}$
(ii) multiplication of either force or area by 4 $0.08 \times$ his (i) OR $0.02 \times$ his (i) C1 8000 N e.c.f. from (i) (2000 N gets C0, C1, A1)
(b) his (ii) - 2000 correctly evaluated

www.igexams.com

4

5 (a (i) increases
(ii) $\mathrm{pV}=$ const in any form
$1.05\left(\times 10^{5}\right) \times 860\left(\times 10^{-6}\right)=p \times 645\left(\times 10^{-6}\right)$
$1.4 \times 10^{5} \mathrm{~Pa}$
(iii) $\mathrm{F}=\mathrm{pA}$ in any form accept weight for F

EITHER increase in pressure $=0.35 \times 10^{5}(\mathrm{~Pa})$ $0.35 \times 10^{5} \times 5.0 \times 10^{-3}$ C1 175 N (minimum 2 s.f.) c.a.o. C1 A1
OR $1.05 \times 10^{5} \times 5.0 \times 10^{-3}$ or 525 N or $1.4 \times 10^{5} \times 5.0 \times 10^{-3}$ or 700 N (C1) $700-525 \mathrm{~N}$ e.c.f. from (a) (ii) 175 N (minimum 2 s.f.) c.a.o.
(b) increases B1
(ii) no change B1
(iii) extra weight (on tray/piston) B1
(iv) increases B1

www.igexams.com

6 (a) (i) hdg or $70 \times 1050 \times 10$ 735000 Pa or $7.35 \times 10^{5} \mathrm{~Pa} \quad$ accept $\mathrm{N} \quad{ }^{2}$ for Pa C1 735000 Pa or $7.35 \times 10^{5} \mathrm{~Pa} \quad$ accept N^{2} for Pa A1
(ii) $\quad 8.35 \times 10^{5} \mathrm{~Pa}$ OR his (a)(i) $+1.0 \times 10^{5} \quad$ accept $\mathrm{N} / \mathrm{m}^{2}$ for $\mathrm{Pa} \quad \mathrm{B} 1$
(b) pressure \times area or $\mathrm{P}=\mathrm{F} / \mathrm{A}$ or $6.5 \times 10^{5} \times 2.5$
$1.625 \times 10^{6} \mathrm{~N}$
A
(c) because density is less accept new calculation of pressure OR because salt water is denser

7	(a) (b) (c)	$\begin{aligned} \mathrm{P} & =\mathrm{hdg} \text { or } 2 \times 1000 \times 10 \\ & =20000 \mathrm{~N} / \mathrm{m}^{2} \text { or } \mathrm{Pa} \\ \mathrm{p} & =\mathrm{f} / \mathrm{a} \text { or } 20000=50 / \mathrm{a} \\ \mathrm{a} & =0.0025 \mathrm{~m}^{2} \end{aligned}$ potential energy of the water converted to kinetic energy of water through outlet (and heat)	C1 A1 C1 A1 B1 B1	$[2]$ $[2]$ [2] Total[6]

8 (a)	pressure $=$ depth $\times \mathrm{g} \times$ density of water	C1
	pressure $=50 \times 10 \times 1000$	C1
	so value is 500000 Pa or $\mathrm{N} / \mathrm{m}^{2}$	A1
(b)	force $=$ pressure \times area in any form	C1
	force $=500000 \times 0.15 \times 0.07$	C1
	force $=5250 \mathrm{~N}$	A1

