Simple Kinetic Molecular Model of Matter

Mark Scheme 1

Level	IGCSE		
Subject	Physics		
ExamBoard	CIE		
Topic	Thermal Physics		
Sub-Topic	Simple Kinetic Molecular Model of Matter		
Paper Type	(Extended) Theory Paper		
Booklet	Mark Scheme 1		

Time Allowed: 58 minutes

Score: /48

Percentage: /100

Question	Answer	Mark
1(a)	Gas molecules (very) far apart OR empty space between gas molecules Molecules of liquid (very) close together/compact OR are touching (each other)	B1 B1
(b)(i)	Faster/more energetic water molecules evaporate/escape/leave Slower/less energetic molecules remain (so temperature is lower)	B1 B1
(b)(ii)	Water in wide container AND has water with larger surface (area) Rate of evaporation higher/faster/quicker OR higher chance of evaporation	B1 B1
		Total: 6

Question	Answer	Mark
2(a)	One of 1, 2 or 3: 1 Molecules move faster OR have more k.e./momentum 2 Molecules hit walls more often/more frequently 3 Molecules hit walls with greater force/impulse/harder	B1
(b)	1 mark for each of 1, 2 and 3 in (a) not given as answer to (a)	B2
(c)(i)	$PV = constant OR P_1V_1 = P_2V_2 OR 98 \times 4800 = P \times 7200$ 65 kPa	C1 A1
(c)(ii)	To prevent the balloon bursting (as its volume increases) OR to reduce the pressure inside the balloon OR pressure difference between inside and outside balloon rises	B1
		Total: 6

3	(a	(i)	P \times V values are 7500 or about 7500 OR If P/pressure doubles, V/volume halves OR vice versa (so) PV = constant OR P α 1/V OR either in words	B1 B1
		(ii)	temperature	B1
	(b)	(i)	P = hdg OR 5.0 × 10 × 1000 50 000 Pa or 50 kPa	C1 A1
		(ii)	Volume of bubble <u>increases</u> Mass of gas <u>stays the same</u> Density of gas <u>decreases</u>	B2
				[Total: 7]
4	(a	(i)	any one from: (molecules) move randomly / in random directions (molecules) have high speeds (molecules) collide with each other / with walls	[max 1]
		(ii)	collisions with walls/rebounding causes change in momentum (of molecules) force is rate of change of momentum / force needed to change momentum	[1] [1]
	(b)	(i)	$p_1V_1 = p_2V_2$ OR 300 × 100 (× 0.12) = p_2 × 0.40 (× 0.12)	[1]
			750 kPa	[1]
		(ii)	(molecules) collide with walls more often owtte OR more collisions with walls per second or per unit time owtte greater force per unit area	[1] [1]

5	(a		 any 2 from: liquid molecules not in fixed positions / can move about / move past each other OR solid molecules have a fixed position liquid molecules have random arrangement OR solid molecules arranged regularly / in patterns / layers / lattice liquid molecules are (slightly) further apart (than solid molecules) OR reverse argument energy / work / thermal energy / (latent) heat required 	max. B2
		(11)	AND to break bonds (between molecules) / to overcome attractive forces (between the molecules) / to increase the <u>potential</u> energy of the molecules	B1
	(b)	(i)	$E = ml$ in any form OR ml OR 1.65×330000 = 540000 J OR 544500 J	C1 A1
		(ii)	chemical (energy in body) converted to thermal / internal (energy)	B1
				[Total: 6]
5	(a	p_1V	$p_1 = p_2 V_2$ in any form OR $(p_1 =) p_2 V_2 \div V_1$	C1
		<i>p</i> ₁ ×	$470 = 800 \times 60 \text{ OR } (p_1 =) 800 \times 60 \div 470$	
		102	OR 100 kPa	A1
	(b)	mol	ecules would move faster/have more KE	B1
	` ,		e (frequent)/harder collisions with <u>walls/cylinder/piston</u>	B1
			ssure increases	B1
		-		
	(c)	use	of $p = F \div A$ in any form OR (F =) pA	C1
		(F =	e) 4400 N	A1

7	(a	rand sud	two of motion of smoke particles: dom/haphazard/unpredictable movement; den changes of direction/zig-zag motion; ear/disappear from view OR go out of/come into focus;	B2
		colli air r	two of conclusions about air molecules: ide with smoke particles OR smoke particles collide with/moved by air molecules; molecules fast(er); molecules small(er) / light(er);	
			ve randomly;	B2
	(b)	(i)	1 (the piston) moves to the right/out(wards) / is pushed away2 (the pressure of the gas) remains constant	B1 B1
		(ii)	(pressure of the gas) increases	B1
			more frequent collisions (of gas molecules) with piston/walls/container OR (gas molecules) collide with piston/walls/container with great(er) force	B1
			[Total	: 81