Simple Kinetic Molecular Model of Matter

Mark Scheme 2

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 2

Time Allowed:
Score:
Percentage:

64 minutes
/53
/100

www.igexams.com

1 (a suitable particles and fluid, and labelled, in suitable container e.g. pollen and water (surface), smoke in air M1
microscope AND, if smoke used, illumination A1
(b) movement of particles NOT atoms or molecules B1 reasonable description of movement OR any mention / clear description of movement in different directions accept if diagram drawn B1
(c) collisions between molecules and particles B1
random movement of molecules OR causes (random) motion of particles B1
[Total: 6]

2 (a (molecules) move in random directions/randomly/with constant random motion/zigzag motion/in all directions B1
(molecules) have random speeds OR a range of speeds OR move (very) fast/at (very) high speed
any 1 from:
(molecules) collide with each other
(molecules) move in straight lines between collisions
(molecules) change direction in collisions
(molecules) collide with walls (of cylinder)
(b) (i) pressure increases M1
more frequent collisions between molecules and walls OR molecules collide with walls more often/at greater rate
(ii) $p V=$ constant

OR $p_{1} V_{1}=p_{2} V_{2}$ in any form
OR $1.0 \times 10^{5} \times 500=p_{2} \times 240$
$2.1 \times 10^{5} \mathrm{~Pa}$ to 2 or more sig. figs

www.igexams.com

(a (i) reduces (rate of evaporation) NOT zero (rate of evaporation) M1
no/fewer evaporated molecules removed by windOR greater humidity/vapour pressureNOT fewer molecules in liquid/puddle blown awayA1
(ii) increases (rate of evaporation) M1molecules move faster/have more energy OR more molecules have energyto escapeA1
(b) greater (rate of evaporation) OR rate is less in small puddle ignore rate of disappearance of puddle B1
surface areas correctly compared B1
(c) description of viable experiment NOT absorption expt M1
statement of measurements to be made A1good detail e.g. thermometers in comparable positions OR pyrometer sameposition relative to different surfacesA1
4 (a (i) molecules in random arrangement B1
molecules similar distance apart B1
(ii) molecules in random arrangement AND further apart B1
(b) (i) gas ringed/indicated
(ii) more room for molecules OR molecules fit into gaps OR there are gaps between molecules
no repulsive forces between molecules OR (repulsive) forces between molecules smaller OR pressure on walls smaller OR only small force/pressure required

www.igexams.com

5 (a (i) diagram showing:
molecules widely spaced B1
molecules randomly positioned B1
(ii) (attractive) forces (much) smaller between gas molecules B1
gas molecules (much) farther apart B1
(b) $\quad p V=$ constant $\mathbf{O R} p_{1} V_{1}=p_{2} V_{2}$ OR ($\left.V_{2}=\right) p_{1} V_{1} / p_{2}$OR ($V_{2}=$) $2.75 \times 10^{6} \times 6 \times 10^{-3} / 1.1 \times 10^{5}$C1
$=0.15 \mathrm{~m}^{3}$ C1
(no. of balloons $\left.=\left(0.15-6 \times 10^{-3}\right) / 3 \times 10^{-3}=\right) 48$ A1
(ii) pressure of air in balloon increases B1molecules move faster OR hit balloon surface harder/more oftenOR larger force rips/breaks rubber OR balloon expandsB1
6 (a diagram shows (molecules) randomly positioned M1
diagram shows most (molecules) touching/very closely spaced A1
(b) (i) (temperature) decreases B1
(ii) more energetic/faster molecules escape from surface/overcome forces of attraction B1
(iii) $E=m l$ in any form OR $m l$ C1
2900 J A1
(iv) any two from:

- cover/decrease surface area
- reduce temperature
- reduce draught owtte
- increase humidity of airB2

www.igexams.com

7 (a $\begin{aligned} & p V=\text { constant } \operatorname{OR} p_{1} V_{1}=p_{2} V_{2} \text { OR } p_{1} V_{1} / V_{2} \text { or } 1.0 \times 10^{5} \times 100 \div 40 \text { C1 } \\ & 2.5 \times 10^{5} \mathrm{~Pa}\end{aligned}$
(b) (i) (the particles move) randomly
(the particles move) slowly OR through small distances OR disappear OR
zigzag OR directions change OR erratic OR straight lines between collisions
$\begin{array}{ll}\text { (ii) air molecules/particles collide with smoke particles (at high speed) } & \mathrm{B} 1 \\ \text { f1 }\end{array}$
fast(er) air molecules OR move randomly OR many collisions B1
(c) diagram showing:
molecules touching each other B1
molecules positioned in an ordered structure B1
[Total: 8]

