Simple Kinetic Molecular Model of Matter

Mark Scheme 2

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Торіс	Thermal Physics
Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 2

Time Allowed:	64 minutes
Score:	/53
Percentage:	/100

1	(a	suitable particles and fluid, and <u>labelled</u> , in suitable container e.g. pollen and water (surface), smoke in air microscope AND, if smoke used, illumination	M1 A1
	(b)	movement of particles NOT atoms or molecules reasonable description of movement	B1
		OR any mention / clear description of movement in different directions accept if diagram drawn	B1
	(c)	collisions between molecules and particles random movement of molecules OR causes (random) motion of particles	B1 B1
			[Total: 6]

2	(a	•	blecules) move in random directions/randomly/with constant random motion/zig- g motion/in all directions	- B1
		•	blecules) have random speeds OR a range of speeds OR move (very) fast/at ry) high speed	t B1
		(mc (mc	/ 1 from: blecules) collide with each other blecules) move in straight lines between collisions blecules) change direction in collisions	
			blecules) collide with walls (of cylinder)	B1
	(b)	(i)	pressure increases	M1
			more <u>frequent</u> collisions between molecules and <u>walls</u> OR molecules collide with <u>walls</u> more often/at greater rate	A1
		(ii)	pV = constant OR $p_1V_1 = p_2V_2$ in any form	
			OR $1.0 \times 10^5 \times 500 = p_2 \times 240$	C1
			2.1 × 10 ⁵ Pa to 2 or more sig. figs	A1
				[Total: 7]

3	(a	(i)	reduces (rate of evaporation) NOT zero (rate of evaporation)	M1
			no/fewer evaporated molecules removed by wind	
			OR greater humidity/vapour pressure NOT fewer molecules in liquid/puddle blown away	A1
		(ii)	increases (rate of evaporation)	M1
			molecules move faster/have more energy OR more molecules have energy to escape	A1
	(b)	-	ater (rate of evaporation) OR rate is less in small puddle	
		igno	ore rate of disappearance of puddle	B1
		sur	face areas correctly compared	B1
	(c)	des	cription of viable experiment NOT absorption expt	M1
		stat	tement of measurements to be made	A1
		•	od detail e.g. thermometers in comparable positions OR pyrometer same	
		pos	sition relative to different surfaces	A1
				[Total: 9]
4	(a	(i)	molecules in random arrangement	B1
			molecules similar distance apart	B1
		(ii)	molecules in random arrangement AND further apart	B1
	(b)	(i)	gas ringed/indicated	
		(ii)	more room for molecules OR molecules fit into gaps OR there are gaps between molecules	B1
			no repulsive forces between molecules OR (repulsive) forces between	
			molecules smaller OR pressure on walls smaller OR only small force/pressure required	B1
				[Total: 6]

5	(a	(i)	diagram showing: molecules widely spaced molecules randomly positioned	B1 B1
		(ii)	(attractive) forces (much) smaller between gas molecules gas molecules (much) farther apart	B1 B1
	(b)		pV = constant OR $p_1V_1 = p_2V_2$ OR $(V_2 =) p_1V_1/p_2$ OR $(V_2 =) 2.75 \times 10^6 \times 6 \times 10^{-3}/1.1 \times 10^5$ = 0.15 m ³ (no. of balloons = $(0.15 - 6 \times 10^{-3})/3 \times 10^{-3} =) 48$	C1 C1 A1
		(ii)	pressure of air in balloon increases molecules move faster OR hit balloon surface harder/more often	B1
			OR larger force rips/breaks rubber OR balloon expands	B1
				[Total: 9]

6	(a	diagram shows (molecules) randomly positioned diagram shows most (molecules) touching/very closely spaced	M1 A1
	(b) (i)	(temperature) decreases	B1
	(ii)	more energetic/faster molecules escape from surface/overcome forces of attraction	B1
	(iii)	<i>E</i> = <i>ml</i> in any form OR <i>ml</i> 2900 J	C1 A1
	(iv)	 any two from: cover/decrease surface area reduce temperature reduce draught owtte increase humidity of air 	В2
			[Total: 8]

7	(a		pV = constant OR $p_1V_1 = p_2V_2$ OR p_1V_1/V_2 or $1.0 \times 10^5 \times 100 \div 40$ 2.5×10^5 Pa	
	(b)	(i)	(the particles move) <u>randomly</u>	B1
			(the particles move) slowly OR through small distances OR disappear OR zigzag OR directions change OR erratic OR straight lines between collisions	B1
		(ii)	air <u>molecules/particles</u> collide with smoke particles (at high speed) fast(er) air molecules OR move randomly OR many collisions	B1 B1
	(c)	mol	gram showing: <u>ecules</u> touching each other <u>ecules</u> positioned in an ordered structure	B1 B1
				[Total: 8]