Simple Kinetic Molecular Model of Matter

Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed: 48 minutes

Score: /40

Percentage: /100

1	(a	(i) a (i)	and (ii) marked together to maximum of 3 marks molecules escape/leave the liquid/form gas or vapour		В1
		(ii)	, , , , , , , , , , , , , , , , , , , ,	ler	B1
			fast(er) molecules/high(er) energy molecules escape OR slow(er) molecules left behind heat flows from body to warm the sweat (so body cools)		B1 B1
	(b)		$(Q =) mc\Delta\theta OR mcT OR 60 \times 4000 \times 0.50$ 1.2 × 10 ⁵ J / 120 kJ		C1 A1
		(ii)	$Q = mL$ in any form OR (m =) Q/L OR either with numbers ($m = 1.2 \times 10^5 / 2.4 \times 10^6 =$) 0.05 kg e.c.f from (b)(i)		C1 A1
				[Tota	ıl 7]
2	(a	at s at a (evaluation	two from: surface / not within liquid (if other way round must be explicit) any temperature / not at boiling point (if other way round must be explicit) aporation) causes cooling ling requires a heat source obles rising	B1 B1	[2]
	(b)	(i)	viable heat source clearly described e.g. electrical/immersion heater appropriate readings e.g. V , I , t or P & t or joulemeter readings OR	B1 B1	[2]
			combustion heater but only with some mention of amount of fuel used correct measurement of amount of fuel used	B1 B1	
		(ii)	viable mass measuring device clearly described e.g. (top pan) balance/scal	B1	
			appropriate readings e.g. <u>mass</u> of water before <u>and</u> after / change of <u>mass</u> of wat OR	B1	[2]
			measuring cylinder volume of water before and after / change of volume of water	B1 B1	
	[Tota			[Tota	l: 6]

3		(a)	any two of: boiling throughout liquid (evaporation at surface), boiling at one temperature (evaporation at any / all temperature / below boiling p boiling not affected by draught/area (evaporation is),	oint)	,	
			boiling produces bubbles (evaporation does not).		B2	
		(b)	(thermal energy) does work against intermolecular forces / breaks bonds molecules separated/moved apart OR becomes PE		B1 B1	
		(c)	apparatus: e.g. kettle AND balance / scales OR steam condensing in water with measuring cylinder / scales AND thermometer two masses determined OR volume/mass condensed determine energy input: e.g. VIt or Pt or $mc\Delta T$ $(l_e =)Q/m$		B1 B1 B1 B1	[8]
4	(a	(i)	any two of: (gas) molecules further apart greater PE move singly / in straight lines OR vice versa for. <u>liquid</u> molecules (allow faster)			
		(ii)	gases compressible OR liquids incompressible forces between gas molecules weaker OR vice versa for liquid molecules	B1 B1		
	(b)		pV = constant OR $p_1V_1 = p_2V_2$ OR $2.6 \times 10^6 \times 0.035$ OR 91 000 $2.6 \times 10^6 \times 0.035/1.0 \times 10^5$ OR 91 000/1.0 $\times 10^5$ 0.91 m ³	C1 A1		
		(ii)	slower / less KE	В1	[8]]

	(c)	water <u>evaporates</u> from her hair heat required for evaporation OR heat flows (from body/hair) to warm up cold water OR faster molecules escape leaving water cooler/lowering KE ignore: there is a cooling effect	B1 B1	[2]	
	(b)	T-shirt folded double/on R dries slower OR T-shirt unfolded/on L dries quicker correct reference to smaller/larger surface area for molecules to evaporate OR water trapped (in fold) OR more humid in fold	M1 A1	[2]	
5	(a)	T-shirt in wind/on L dries quicker OR T-shirt out of wind/on R dries slower wind removes more evaporated molecules accept quicker NOT wind gives water molecules more KE	M1 A1	[2]	
	(c)	dots move in or out of focus/disappear OR appear brighter/dimmer	[Tota	[1] il: 5]	
	(13)	air and smoke/dots collide ignore other collisions	B1	[2]	
	(b)	smoke particles condone atoms, molecules etc. AND (invisible) air molecules	B1	[4]	
5	(a	irregular/random/haphazard movement any mention of different directions or clearly described	B1 B1	[2]	
_	1-	inner and an American Alberta and an analysis and	D4		