Simple Kinetic Molecular Model of Matter

Mark Scheme 4

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Торіс	Thermal Physics
Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 4

Time Allowed:	53 minutes
Score:	/44
Percentage:	/100

(a	(i)	(Force exerted when) molecules hit wall / surface / solid (and rebound) Allow (force) due to momentum change in collision	B1	
	(ii)	Molecules/atoms/particles collide with / push against walls more (often) (so) bigger force / push	B1 B1 B1	
		NOT collide faster		
(b)	P ₁ V 8.0 V ₂ = Vol	$V_1 = P_2V_2 \text{ OR PV} = \text{constant}$ × 10 ⁵ × 5000 = 1 × 10 ⁵ × V ₂ = 40 000 cm ³ ume escaped = 40 000 – 5000 = 35 000 cm ³	C1 C1 C1 A1	[8]
(a	(i)	piston lower than original/single line below original lower face	B1	[1]
	(ii)	three points from: they OR air/gas molecules/particles move/collide ignore faster they OR air/gas molecules/particles collide with <u>piston/walls</u> ignore collisions between molecules force exerted on <u>piston</u> greater force/pressure on top (than bottom initially)	B1 B1 B1	
		number of collisions of <u>gas</u> molecules with piston increases piston moves until <u>pressures/forces</u> equal		[3]
(t) (i)	piston higher than original/single line below above original lower face	B1	[1]
	(ii)	two points from: molecules of <u>gas</u> moving <u>faster</u> OR more momentum/KE more/harder collisions of gas molecules with piston/walls greater force/pressure on bottom (than top initially) piston moves <u>up</u> until <u>pressures/forces</u> equal	B1 B1	[2]
	(a (b) (a	(a (i) (ii) (b) P ₁ V 8.0 V ₂ = Vol (a (i) (ii) (ii)	 (a (i) (Force exerted when) molecules hit wall / surface / solid (and rebound) Allow (force) due to momentum change in collision (ii) Molecules/atoms/particles collide with / push against walls more (often) (so) bigger force / push NOT collide faster (b) P₁V₁ = P₂V₂ OR PV = constant 8.0 × 10⁵ × 5000 = 1 × 10⁵ × V₂ V₂ = 40 000 cm³ Volume escaped = 40 000 – 5000 = 35 000 cm³ (a (i) piston lower than original/single line below original lower face (ii) three points from: they OR air/gas molecules/particles move/collide ignore faster they OR air/gas molecules/particles collide with <u>piston/walls</u> ignore collisions between molecules force exerted on <u>piston</u> greater force/pressure on top (than bottom initially) number of collisions of <u>gas</u> molecules with piston increases piston moves until <u>pressures/forces</u> equal (b) (i) piston higher than original/single line below above original lower face (ii) two points from: molecules of <u>gas</u> moving <u>faster</u> OR more momentum/KE more/harder collisions of gas molecules with piston/walls greater force/pressure on bottom (than top initially) piston moves <u>up</u> until <u>pressures/forces</u> equal 	 (a (i) (Force exerted when) molecules hit wall / surface / solid (and rebound) Allow (force) due to momentum change in collision (ii) Molecules/atoms/particles collide with / push against walls more (often) (so) bigger force / push NOT collide faster (b) P₁V₁ = P₂V₂ OR PV = constant 8.0 × 10⁵ × 5000 = 1 × 10⁵ × V₂ V₂ = 40 000 cm³ Volume escaped = 40 000 – 5000 = 35 000 cm³ (a (i) piston lower than original/single line below original lower face (ii) three points from: they OR air/gas molecules/particles move/collide ignore faster they OR air/gas molecules/particles collide with <u>piston/walls</u> ignore collisions between molecules force exerted on <u>piston</u> greater force/pressure on top (than bottom initially) number of collisions of <u>gas</u> molecules with piston increases piston moves until <u>pressures/forces</u> equal (b) (i) piston higher than original/single line below above original lower face E1 (ii) two points from: molecules of <u>gas</u> molecules with piston/walls B1 B1

3	(a	(i)	(Molecules) move randomly / in random directions (Molecules) have high speeds (Molecules) collide with each other / with walls	B1	
		(ii)	(Force is caused by) collision (and rebound) of molecules (with the walls) o.w.t.t		
		(iii)	$p = F/A \text{ OR (force =) } pA \text{ OR } 300 \times 0.12$ OR 300 000 × 0.12	C1	
			= 36 kN / 36 000 N	A1	
	(b)		$p_1V_1 = p_2V_2 / 300 \times 0.1 (\times 0.12) = p_2 \times 0.05 (\times 0.12)$ OR if V is halved, p is doubled OR vice versa	C1	
			<i>p</i> ₂ = 600 kPa	A1	
		(ii)	(molecules) collide <u>with walls</u> more often o.w.t.t.e. OR more collisions <u>with walls</u> per second or per unit time o.w.t.t.e	B1	[7]
4	(a	mo few low	lecules/atoms move more slowly rer collisions OR less hard collisions <u>with walls / balloon</u> rer pressure	B1 B1 B1	[3]
	(b)	larg few low	ger surface area of walls OR atoms further apart OR atoms travel further ver collisions <u>with walls/balloon</u> (only penalise missing walls once in (a) or (b)) ver pressure	B1 B1 B1	[3]

5	(a	(i)	bombardment/collide by air molecules/particles/atoms		B1
		(ii)	lighter/very small/smaller than smoke particles/too small fast-moving/high kinetic energy random movement/movement in all directions	to be seen)))	any 2 B1+B1
	(b)		increases (builds up)		B1
		(ii)	air molecules/particles/atoms bombard/hit walls		B1
			(ignore vibrate faster) greater force (per unit area) OR more collisions (per se	econd)	B1 B1
					[Total: 7]
6	(a	Tot (i)	al penalty for use of 'particles' rather than 'molecules' is 1 idea of some molecules gaining more KE mols overcome attractive forces OR mols break free of	mark. surface	B1 B1
		(ii)	greater area more mols escape (in given time)		B1 B1
		(iii)	increase temperature / supply more heat / make hotter blow air across surface, or equiv. reduce humidity decrease pressure)) any 2))	B1 + B1
	(b)	wat mo less ene eva ide	er evaporates from cloth / water OR faster / more energe lecules evaporate s energetic mols left behind ergy to evaporate taken from milk iporation produces cooling a of cloth always being damp by soaking up water	etic)) any 3)	B1 × 3 [9]