www.igexams.com

Simple Kinetic Molecular Model of Matter

Mark Scheme 5

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 5

Time Allowed:

Score: /66

Percentage:

www.igexams.com

1
(a) (pushing rubber cover) volume reduced
(when volume reduce), pressure goes up
(b) $1 \times\left(10^{5}\right) \times 60=1.5 \times\left(10^{5}\right) \times V$
$40\left(\mathrm{~cm}^{3}\right)$ C1
reduction in volume $=20 \mathrm{~cm}^{3}$ or $1 / 3$
(c) (ave) speed of mols/particles/atoms greater at high temp NOT energy/KE
stronger/more collisions with walls OR greater pressure
2 (a) $\mathrm{pV}=$ const in any form, words or recognisable symbols
NOT p proportional to $1 / \mathrm{V}$, NOT $p=1 / \mathrm{V}$, any mention of T gets B 0
(b) $p \times V$ is the same each time $O R$ when p is doubled, V is (always) halved
so if gas obeys the law, the temperature must have been constant
(c) $\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}$
$1.2\left(\times 10^{5}\right) \times 75(\times \mathrm{A})=3.0\left(\times 10^{5}\right) \times l(\times \mathrm{A}) \quad \mathrm{C} 1$
$l=30 \mathrm{~mm}$
distance moved $=45 \mathrm{~mm}$ e.c.f.
(b) air molecules hit dust particles in all directions/move it in all directions just as likely to be up as down (allow marks scored on diagram)
(c) random movements smaller OR slower movement OR less energy OR movement decreases

www.igexams.com

$4 \quad$ (a $\begin{array}{ll}\text { (i) random } & \text { B1 } \\ \text { high speed (between collisions) } & \text { B1 }\end{array}$
(ii) hit walls B1
many hits/unit area OR hit hard OR large force OR high energy OR many hits/s OR hit very often
(b) particles vibrate (more) OR electrons gain energy

B1 particle to particle transfer OR flow of free electrons B1
(c) $75 \times 3200 \mathrm{OR} \mathrm{ml}$

240000 J OR 240 kJ OR $2.4 \times 10^{5} \mathrm{~J}$
[Total: 8]

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
(a) \\
(b) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
air molecules hit particles or vice versa \\
air molecules have speed/moment/energy \\
hits uneven or from all directions \\
hits (by small molecules) can move a large particle or moves particles small distances \\
most energetic/fastest molecules \\
need energy to overcome forces/break bonds/separate mols. \\
so work must be done/energy used as work
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{B} 1 \\
\& \mathrm{~B} 1 \\
\& \mathrm{~B} 1 \\
\& \\
\& \mathrm{~B} 1 \\
\& \\
\& \mathrm{~B} 1 \\
\& \mathrm{~B} 1 \\
\& \mathrm{~B} 1
\end{aligned}
\] \& 4

3
$[7]$

\hline
\end{tabular}

6	(a) (i)	random	B1	
	(ii)	hit and rebound	B1	[2]
	(b) (i)	increase or further apart	B1	
	(ii)	increase or move faster	B1	[2]
	(c)	random, fast in gas to vibration in solid	B1	
	(ii)	long way apart in gas to very close or touching	B1	[2] Total [6]

www.igexams.com

7 (a $\left.\begin{array}{ll}\text { Water molecules at higher temps. have higher (av) k.e. } & \text { B1 } \\ \text { lenergy } \\ \text { Higher energy molecules (have greater chance to) } \\ \text { escape the surface }\end{array}\right)$
(600 added or 34500 used can score 2 max)

8 (a) (i) any suitable random motion
molecules hit walls 1
(ii) 1.
rebound/bounce back or many hits per unit area or per unit time or collisions create force
2.
(av) k.e./speed of molecules increases 1
more hits(/sec) or harder hits
1
(b) $\quad \mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{v}_{2}$ quoted or any recognisable substitution 1
$2 \times 10^{5} \times 0.35=5 \times 10^{5} \times v \quad 1$
volume $=0.14\left(\mathrm{~m}^{3}\right)$

9
(a) air molecules hit dust particles
hits continuously/unevenly/hits cause movement in all directions
air molecules fast moving/high energy
B1
(b) any attempt to use $\mathrm{p} \times \mathrm{v}=$ constant or correct

C1 proportion

C1
fraction $2 \times 80 / 25$ seen
A1

www.igexams.com

