Simple Kinetic Molecular Model of Matter

Mark Scheme 5

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 5

Time Allowed: 79 minutes

Score: /66

Percentage: /100

- 1 (a) (pushing rubber cover) volume reduced M1 (when volume reduce), pressure goes up A1
 - (b) $1 \times (10^5) \times 60 = 1.5 \times (10^5) \times V$ C1 $40 \text{ (cm}^3)$ C1 reduction in volume = 20 cm^3 or 1/3
 - (c) (ave) speed of mols/particles/atoms greater at high temp NOT energy/KE B1 stronger/more collisions with walls OR greater pressure B1

 [7]
- 2 **(a)** pV = const in any form, words or recognisable symbols

 NOT p proportional to 1/V, NOT p =1/V, any mention of T gets B0
 - (b) p × V is the same each time OR when p is doubled, V is (always) halved so if gas obeys the law, the temperature must have been constant A1
 - (c) $p_1V_1 = p_2V_2$ C1 $1.2 (\times 10^5) \times 75 (\times A) = 3.0 (\times 10^5) \times l (\times A)$ C1 l = 30 mm C1 distance moved = 45 mm e.c.f.

[7]

- 3 (a) typical random path drawn, at least 3 abrupt changes of direction B1
 - (b) air molecules hit dust particles in all directions/move it in all directions
 just as likely to be up as down
 (allow marks scored on diagram)

 B1
 - (c) random movements smaller OR slower movement
 OR less energy OR movement decreases
 B1 [4]

4 ((a	(i)	random high speed (between collisions)	B1 B1
		(ii)	hit walls many hits/unit area OR hit hard OR large force OR high energy	В1
			OR many hits/s OR hit very often	В1
	(b)		ticles vibrate (more) OR electrons gain energy ticle to particle transfer OR flow of free electrons	B1 B1
	(c)		× 3200 OR ml 0 000 J OR 240 kJ OR 2.4 × 10⁵J	C1 A

[Total: 8]

5	(a)	air molecules hit particles or vice versa air molecules have speed/moment/energy	B1 B1	
		hits uneven or from all directions	B1	
		hits (by small molecules) can move a large particle or moves particles small distances	B1	4
	(b) (ii)	most energetic/fastest molecules need energy to overcome forces/break bonds/separate mols.	B1 B1	
		so work must be done/energy used as work	B1	3
				[7]

6	(a) (i)	random	B1	
	(ii)	hit and rebound	B1	[2]
	(b) (i)	increase or further apart	В1	
	(ii)	increase or move faster	B1	[2]
	(c)	random, fast in gas to vibration in solid	В1	
	(ii)	long way apart in gas to very close or touching	В1	[2] Total [6]
				i otai [o]

7	(a	Water molecules at higher temps. have higher (av) k.e. / energy	B1		
		Higher energy molecules (have greater chance to) escape the surface Higher energy molecules have energy to break liquid	В1		
		"bonds" or separate liquid molecules or more evaporation at 85°C (lowers level)	В1		3
	(b)	Heat for evaporation = 34 500 – 600 = (33 900)	C 1		
		Sp. latent heat of evaporation = heat/mass evap. or 33 900 / 15 2260 J/g (method and working correct, but no heat loss used, 2/3)	C1 A1		
		(600 added or 34 500 used can score 2 max)			3
8	s (a) (i)	any suitable random motion molecules hit walls	1 1		
	(ii)	1. rebound/bounce back or many hits per unit area or per unit time or collisions create force	1		
		2. (av) k.e./speed of molecules increases more hits(/sec) or harder hits	1 1	5	
	(b)	$p_1v_1 = p_2v_2$ quoted or any recognisable substitution 2 x 10 ⁵ x 0 . 35 = 5 x 10 ⁵ x v	1		
		$2 \times 10^{\circ} \times 0.35 = 5 \times 10^{\circ} \times V$ volume = 0.14 (m ³)	1	(8)	
9	(0)		144		
	(a)	air molecules hit dust particles hits continuously/unevenly/hits cause movement in all directions	M1 A1		
		air molecules fast moving/high energy	B1		3
	(b)	any attempt to use p x v = constant or correct proportion	C1 C1		
		fraction 2 x 80/25 seen p = 6.4 x 10 (Pa)	A 1		3
					[6]

10 (a)	Some have extra/more energy than others	B1	
	most energetic leave surface/ break liquid bonds etc	B2	M2
(b)	evaporation occurs strictly at the surface/at all temperature	B1	
	boiling occurs throughout liquid/ at one temperature (at normal at. pr.)/100°C	B1	2
(c)	energy supplied = Wt /60 x 120	C1	
	sp.latent heat = energy/mass evaporated or 60 x 120/3.2	C1	
	value is 2250 J/g	A 1	3
			[7]