www.igexams.com

Simple Kinetic Molecular Model of Matter

Mark Scheme 6

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 6

Time Allowed:	49 minutes
Score:	$/ 41$
Percentage:	$/ 100$

www.igexams.com

1
(a (a liquid evaporates) at any temperature/below the boiling point/over a range of temperatures/below $100^{\circ} \mathrm{C}$ / at different temperatures/not at a fixed temperature
(during evaporation) vapour forms at/ escapes from the surface of the liquid
(without a supply of thermal energy,) evaporation continues/occurs / doesn't stop OR causes liquid to cool/is slower/reduces
(b) (i) $\quad(Q=) m L$

C1
OR $0.075 \times 2.25 \times 10^{6}$
$1.7 \times 10^{5} \mathrm{~J}$
(ii) $(E=)$ VIt OR $240 \times 0.65 \times(20 \times 60)$

OR $P=I V$ and $P=E / t$ OR energy $/$ time
$1.9 \times 10^{5} \mathrm{~J}$
(iii) energy is transferred to the surroundings OR in heating the surroundings/air/atmosphere/hot-plate
[Total: 8]
(a molecules OR atoms OR particles speed OR velocity OR kinetic energy molecules OR atoms OR particles (Surface) area B2 any four correct gains 2 marks, two or three correct gains 1 mark
(b) (i) (when cap is screwed on) at top of mountain:
pressure of air in bottle = the low pressure of the air outside
OR is less than pressure at bottom of mountain
OR is low
(at bottom of mountain) bottle collapses because pressure outside (bottle) is greater than pressure inside
(ii) Boyle's law applies OR $P V=$ constant OR $P_{1} V_{1}=P_{2} V_{2} \quad$ C1
$9.2 \times 10^{4} \times V=4.8 \times 10^{4} \times 250$
C1
$130 \mathrm{~cm}^{3}$

www.igexams.com

3 (a) (smaller because area smaller B1
(ii) smaller because depth/height smaller B1
(b) ($h \rho g$ OR $12 \times 1000 \times 10$ C1
$1.2 \times 10^{5} \mathrm{~Pa}$ OR $1.1772 \times 10^{5} \mathrm{~Pa}$ OR $1.176 \times 10^{5} \mathrm{~Pa}$ accept $\mathrm{N} / \mathrm{m}^{2} \quad \mathrm{~A} 1$
(ii) candidate's (i) $+1.0 \times 10^{5} \mathrm{~Pa}$ correctly evaluated with unit (correct value 2.2×10^{5})

B
(iii) $p_{1} V_{1}=p_{2} V_{2}$ in any form
$1.1 \mathrm{~cm}^{3}$
OR $0.5 \times$ candidate's (ii)/ 10^{5} correctly evaluated
(iv) value in (iii) too small OR volume larger o.w.t.t.e.
(a (i) increases
(ii) $\mathrm{pV}=$ const in any form
$1.05\left(\times 10^{5}\right) \times 860\left(\times 10^{-6}\right)=p \times 645\left(\times 10^{-6}\right)$
$1.4 \times 10^{5} \mathrm{~Pa}$
C
A1

(b) increases B1
(ii) no change
(iii) extra weight (on tray/piston)
(iv) increases

www.igexams.com

5
(a increase surface area of tank B1 blow air over surface/put in windy place B1
(b) (i) capillary tube longer or liquid with lower expansivity B1
(ii) capillary tube thinner/finer or liquid with higher expansivity or bigger bulb
B1
(c) $\mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{p}_{2} \mathrm{v}_{2}$ or $1 \times 10^{5} \times 150=\mathrm{p}_{2} \times 50 \quad$ C1 $\mathrm{p}_{2}=3 \times 10^{5}(\mathrm{~Pa})$

