Simple Kinetic Molecular Model of Matter

Mark Scheme 6

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Торіс	Thermal Physics
Sub-Topic	Simple Kinetic Molecular Model of Matter
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 6

Time Allowed:	49 minutes
Score:	/41
Percentage:	/100

1	(a		iquid evaporates) at any temperature/below the boiling point/over a range o peratures/below 100°C/at different temperatures/not at a fixed temperature	f B1
		(du	ring evaporation) vapour forms at/escapes from the surface of the liquid	B1
			hout a supply of thermal energy,) evaporation continues/occurs/doesn't stop causes liquid to cool/is slower/reduces	
	(b)	(i)	(Q =) mL OR 0.075 × 2.25 × 10 ⁶	C1
			1.7 × 10 ⁵ J	A1
		(ii)	(<i>E</i> =) <i>VIt</i> OR 240 × 0.65 × (20 × 60) OR <i>P</i> = <i>IV</i> and <i>P</i> = <i>E</i> / <i>t</i> OR energy/time	C1
			1.9 × 10 ⁵ J	A1
	((iii)	energy is transferred <u>to the surroundings</u> OR in heating the surroundings/air/atmosphere/hot-plate	
				[Total: 8]
2	(a	s n (:	nolecules OR atoms OR particles peed OR velocity OR kinetic energy nolecules OR atoms OR particles Surface) area ny four correct gains 2 marks, two or three correct gains 1 mark	B2
	(k	D) ((when cap is screwed on) at top of mountain: pressure of air in bottle = the low pressure of the air outside OR is less than pressure at bottom of mountain OR is low 	B1
			(at bottom of mountain) bottle collapses because pressure outside (bottle) is greater than pressure inside	B1
		(i	Boyle's law applies OR PV = constant OR $P_1V_1 = P_2V_2$ 9.2 × 10 ⁴ × V = 4.8 × 10 ⁴ × 250 130 cm ³	C1 C1 A1
				[Total: 7]

3	(a) (smaller because <u>area</u> smaller	B1	
	(ii)	smaller because depth/height smaller	B1	
	(b) (<i>hρ</i> g OR 12 × 1000 × 10 1.2 × 10 ⁵ Pa OR 1.1772 × 10 ⁵ Pa OR 1.176 × 10 ⁵ Pa accept N/m ²	C1 A1	
	(ii)	candidate's (i) + 1.0×10^5 Pa correctly evaluated with unit (correct value 2.2×10^5)	в	
	(iii)	$p_1V_1 = p_2V_2$ in any form 1.1 cm ³ OR 0.5 × candidate's (ii) /10 ⁵ correctly evaluated	C1 A1	
	(iv)	value in (iii) too small OR volume larger o.w.t.t.e.	B1	[8]

(a (i) increasesB1(ii) pV = const in any formC1 $1.05 (\times 10^5) \times 860 (\times 10^{-6}) = p \times 645 (\times 10^{-6})$ C 1.4×10^5 PaA1

4

(iii)	F = pA	in any form accept weight for F	C1
	EITHE		C1
		0.35 × 10 ⁵ × 5.0 × 10 ^{−3}	C1
		175 N (minimum 2 s.f.) c.a.o.	A1
	OR	$1.05 \times 10^5 \times 5.0 \times 10^{-3}$ or 525 N or $1.4 \times 10^5 \times 5.0 \times 10^{-3}$ or 700 N	(C1)
		700 – 525 N e.c.f. from (a) (ii)	(C1)
		175 N (minimum 2 s.f.) c.a.o.	(A1)

(b)	increases	B1
(ii)	no change	B1
(iii)	extra weight (on tray/piston)	B1
(iv)	increases	B1

[12]

(а	increase surface area of tank blow air over surface/put in windy place		B1 B1	2
(b)	(i)	capillary tube longer or liquid with lower expansivity	B1	
	(ii)	capillary tube thinner/finer or liquid with higher expansivity or bigger bulb	B1	2
(c)	p ₁ v ₁ p ₂ =	= p_2v_2 or 1 x 10 ⁵ x 150 = p_2 x50 3 x 10 ⁵ (Pa)	C1 A1	2 [6]

5