Thermal Properties and Temperature

Mark Scheme 1

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Торіс	Thermal Physics
Sub-Topic	Thermal Properties and Temperature
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 1

Time Allowed:	56 minutes
Score:	/46
Percentage:	/100

1	(a	Coal, hydroelectric and wind boxes ticked	B2
	(b)	 (i) Copper is a good conductor of thermal energy/heat Black surface is a good / the best absorber <u>of radiation</u>/<u>infra red</u> 	B1
		 (Temp rise =) 72 - 20 = 52 (°C) (Q =) mc∆θ OR 0.019 × 4200 × 52 4100 J 	C1 A1
		(iii) Efficiency = (power) output/(power) input (× 100) OR $70 = \frac{(4100/5) \times 100}{power input}$ OR $\frac{(4100 \times 100)}{power input}$ OR rearranged Power input = 1200 W	C1 A1
			[Total: 9]
2	(a	 energy/heat required to increase temperature of 1 kg / 1 g / unit mass (of the substance) by 1 °C / 1 K / unit temperature 	B1 B1
	(b)	$E = m c \Delta \theta \text{ in any form OR } (c =) E \div m \Delta \theta$ $E = Pt \text{ in any form OR } 420 \times 95 (= 39900)$ $\Delta \theta = [40.5 - 19.5] \text{ OR } 21$ $(c = 39900 \div 42 =) 950 \text{ J/ (kg °C)}$	C1 C1 C1 A1
	(c)	 any two separate points from: lagging / insulation (around block) OR insulate (the block) 	max. B2
		 raise temperature of block by a smaller amount OR heat for a shorter time OR use lower power heater for same time OR higher power for same temperature rise / shorter time polish the surface of the block OR wrap the block in shiny material OR paint (shiny) white reduce initial temperature of block (to below room temperature) OR raise temperature of room reduce draughts 	

3	(a	box 2:	Z measures p. d.	B1
		box 4:	X and Y are different materials.	B1
		box 6:	X and Y are electrical conductors.	B1
	(b)	more sen	sitive OR thread moves more	M1
		more (gre	eater volume of) expansion	A1
	(c)	not linear	OR linearity worse/less	B1
		correctly	relates movement of thread to diameter of capillary	B1
4	(a	same dis	tance moved (by thread) for same temperature change	B1
	(b)	-10°C		B1
	(c)	biggenarro	rom: r stem r bulb OR more liquid wer bore OR thinner thread with greater expansivity	max. B2
	(d)	(i) falls	from 100 °C with a decreasing gradient AND at a faster rate	B1
		finish	nes horizontal along 20 °C line	B1
		(ii) only	bottom box ticked	B1
				[Total: 7]

5	(a	ene	ergy/heat needed to change state of substance/melt	B1
		(fro	m solid to liquid at constant temperature/melting point) per kg/per unit mass	B1
	(b)	(i)	$(l_{f}=) Q \div m$ in any form: words, symbols, numbers	C1
			340 J/kg OR 336 J/g OR equivalent in J/kg	A1
		(ii)	(c =) Q ÷ $[m \Delta T]$ in any form: words, symbols, numbers 4.1 J / (g °C) OR 4100 J/(kg °C)	C1
		(iii)	<u>cold</u> water denser AND sinks convection (current) OR circulation OR warmer water rises	B1 B1
				[Total: 8]
6	(a	c =	Q/(mΔθ)	B1
	(b)		d = m/V in any form OR (m =) Vd OR 0.0036 × 1000 3.6 kg	C1 A1
		(ii)	(E =) Pt OR 8500 × 60 OR 510 000 J OR 5.1×10^5 J $\Delta \theta = Q/mc OR \Delta \theta = Pt/mc in any form OR 5.1 \times 10^5/(3.6 \times 4200)= 34 (°C)$	C1 C1 A1
			OR ∆θ = P/(mass per second × c) = 8500/[(0.0036/60) × 4200 = 34 (°C)	(C1) (C1) (A1)

[Total: 7]