Thermal Properties and Temperature

Mark Scheme 10

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic Sub-Topic	Thermal Properties and Temperature
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 10

Time Allowed: 69 minutes

Score: /57

Percentage: /100

1	(a	a any two from: at surface / not within liquid (if other way round must be explicit) at any temperature / not at boiling point (if other way round must be explicit) (evaporation) causes cooling boiling requires a heat source bubbles rising				
	(b)	(i) viable heat source clearly described e.g. electrical/immersion heater appropriate readings e.g. <i>V</i> , <i>I</i> , <i>t</i> or <i>P</i> & <i>t</i> or joulemeter readings OR	B1 B1	[2]		
		combustion heater but only with some mention of amount of fuel used correct measurement of amount of fuel used	B1 B1			
		(ii) viable mass measuring device clearly described	B1			
		e.g. (top pan) balance/scal appropriate readings e.g. <u>mass</u> of water before <u>and</u> after / change of <u>mass</u> of wat OR	B1	[2]		
		measuring cylinder <u>volume</u> of water before <u>and</u> after / change of <u>volume</u> of water	B1 B1			
			[Tota	l: 6]		
2	(a)	any two of: boiling throughout liquid (evaporation at surface), boiling at one temperature (evaporation at any / all temperature / below boiling po boiling not affected by draught/area (evaporation is),				
		boiling produces bubbles (evaporation does not).	B2			
	(b)	(thermal energy) does work against intermolecular forces / breaks bonds molecules separated/moved apart OR becomes PE	B1 B1			
	(c)	apparatus: e.g. kettle AND balance / scales OR steam condensing in water with measuring cylinder / scales AND thermometer two masses determined OR volume/mass condensed determine energy input: e.g. VIt or Pt or $mc\Delta T$ ($l_e =)Q/m$	B1 B1 B1 B1	[8]		

3 (a (i) (gravitational) potential energy to kinetic energy B1 (ii) chemical energy to (gravitational) potential energy В1 reference in (i) or (ii) to heat/thermal/internal energy produced OR work done against air resistance or friction **B**1 **(b) (i)** (K.E. =) $\frac{1}{2}mv^2$ OR $0.5 \times 940 \times 16^2$ C1 1.2×10^{5} J Α (ii) in words or symbols $Q = mc\theta$ OR $\theta = Q/mc$ C1 $1.203 \times 10^5 = 4.5 \times 520 \times \theta$ OR $\theta = 1.203 \times 10^5 / (4.5 \times 520)$ C1 51°C or K **A1** [Total: 8] (a) matt black B1 4 (b) (i) L down and R up, equal amounts (by eye) B1 (ii) on black side or on left (more) energy / heat absorbed OR greater temp rise OR heats up quicker B1

on black side or on left greater expansion of air / greater pressure of air

B1

[4]

5	(a		good conductor (of heat) (ignore electricity)	B1
			black is <u>good</u> absorber/ <u>bad</u> reflector (ignore emitter)	B1
			reduce heat lost/conducted away (from pipes/sheet) NOT prevents heat loss o.w.t.t.e.	B1
	(air heated OR glass reduces/prevents convection OR greenhouse effect OR reference to far and near I.R. OR glass prevents warm air being blown away OR traps air Ignore traps heat	B1
	(b)	<i>mcθ</i> 2.31 9.24	OR 22 OR 250 × 4200 × his 22 × 10 ⁷ (J) e.c.f from previous line × 10 ⁷ J OR e.c.f from previous line × 4 correctly evaluated unit penalty if J seen anywhere in (b) clearly applied to an energy	C1 C1 C1 A1 [Total: 8]
6	(a	To	tal penalty for use of 'particles' rather than 'molecules' is 1 mark.	
		(i)	idea of some molecules gaining more KE mols overcome attractive forces OR mols break free of surface	B1 B1
		(ii)	greater area more mols escape (in given time)	B1 B1
		(iii)	increase temperature / supply more heat / make hotter) blow air across surface, or equiv.) any 2 reduce humidity) decrease pressure)	B1 + B1
	(b)	mo les en eva	ter evaporates from cloth / water OR faster / more energetic lecules evaporate) s energetic mols left behind) ergy to evaporate taken from milk) any 3 aporation produces cooling) a of cloth always being damp by soaking up water)	B1 × 3

7	(a	(i)	random high speed (between collisions)	B1 B1	
		(ii)	hit walls	B1	
			many hits/unit area OR hit hard OR large force OR high energy OR many hits/s OR hit very often	B1	
	(b)		ticles vibrate (more) OR electrons gain energy ticle to particle transfer OR flow of free electrons	B1 B1	
(с			× 3200 OR ml) 000 J OR 240 kJ OR 2.4 × 10 ⁵ J	C1 A	
				[Total: 8]	
8.	(a)		Water molecules at higher temps. have higher (av) k.e. / energy Higher energy molecules (have greater chance to)	В1	
			escape the surface Higher energy molecules have energy to break liquid "bonds" or separate liquid molecules or more	B1	
			evaporation at 85°C (lowers level)	B1	3
	(b)		Heat for evaporation = 34 500 – 600 = (33 900)	C1	
			Sp. latent heat of evaporation = heat/mass evap. or 33 900 / 15 2260 J/g (method and working correct, but no heat loss	C1	
			used, 2/3)	A 1	
			(600 added or 34 500 used can score 2 max)		3

[Total: 6]