Thermal Properties and Temperature

Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Thermal Properties and Temperature
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed:	58 minutes
Score:	/48
Percentage:	/100

1	(a	initi time	al te e of	f block m emperature θ_1 and final temperature θ_2 heating t /p.d. V AND current I	B1 B1 B1 B1	
Öl nu			(c =) $VIt \div [m(\theta_2 - \theta_1)]$ OR $Pt \div [m(\theta_2 - \theta_1)]$ OR $E \div [m(\theta_2 - \theta_1)]$ as appropriate to symbols defined in (a) numerator correct denominator correct			
	(c)			thermal energy/heat lost (to surroundings) <u>so temperature rise is less</u> are thermal energy/heat input required for <u>same temperature rise</u>	B1	
					[Total: 7]	
2	(a	(i)	1.	range	M1	
			2.	correct link between stem length and range/top temperature/expansion	A1	
		(ii)	1.	sensitivity	M1	
			2.	correct link between capilliary diameter and sensitivity/movement of thread	A1	
	(b)	(i)	•	loured) alcohol (note: no mark for this point, but must be present for subsequ rks to be awarded)	ient M0	
		(ii)	any • • •	/ two from: water will freeze/alcohol doesn't freeze coloured alcohol (clearly) visible alcohol has even expansion/water has uneven expansion alcohol expands more/water expands less alcohol has lower SHC/thermal capacity		
			•	alcohol does not stick to glass	B2	
					[Total: 6]	

3	1	(Q/E =) Pt or 2400 × 50 1.2×10^5 (J) $(c =) Q/m\Delta T$ or $1.2 \times 10^5/(1.5 \times 32)$ (condone 2400/(1.5 × 32)) (allow e.c.f. from candidate's $Q = 1.2 \times 10^5$)		C1 C1 C	
	(3	.5 × 10 ³ J/(kg °C) or 2.5 J/(g °C) (condone missing brackets) allow e.c.f. from candidate's Q = 1.2 × 10 ⁵)	А	[4]	
	(b) (student's value) too large and heat lost to surroundings/kettle/evaporation	B1	[1]	
4	(a (i) e.g. freezing, solidification, condensation OR example e.g. water to ice, steam to water, gas to solid		B1	
	(ii) No change		B1	
	b	eat/energy required to change temperature of the body y 1 °C / 1 K / 1 unit / 1 deg		B1 B1	
OR mass (of body) × specific heat capacity				(B2)	
	(c) (i) $Q = mc\theta$ OR in words OR 250 × 4.2 × 20 = 21000 J		C1 A1	
	(ii) 21000J OR same as (c)(i)		B1	
	(iii) $Q = mL$ OR $m = Q/L$ OR either in words OR 21000 = $m \times 330$ OR $m = 21000/330$ = 63.6 g at least 2 s.f.		C1 A1	
			[Tota	l: 9]	

5	(a	(i)	Glass / flask receives heat / rises in temperature Glass / flask expands	B´ B´	
		(ii)	Heat flows through glass to water OR Water receives heat / thermal energy from / conducted by glass OR Water temperature <u>rises</u> OR Water molecules move faster / gain K.E. Water expands / Water molecules move further apart	B´ B´	
		(iii)	Glass / solid expands less OR water / liquid expands more	B´	1
	(b)		e a bigger flask OR a narrower tube Use a solid <u>and</u> a liquid that expand more	B [^] [Total: 6]	
6	(a		at required to change state of / melt 1 kg / 1 g / unit mass of solid (with no nge of temperature)	B1	
			w specific example e.g. ice to water T liquid to gas		
	(b)	d = m/V in any form OR (m =) V × d OR (m =) 0.25 × 0.012 × 920 = 2.76 kg at least 2 significant figures. *Unit penalty applies	C1 A1	
		(ii)	60% of 250 = 150 (W/m ²) OR 250 × 0.25 = 62.5 (J)	C1	
			Heat absorbed in 1 s = 150 × 0.25 = 37.5 (J) OR 60 % of 62.5 = 37.5 J OR J/s OR W *Unit penalty applies	A1	
			Allow J/s or W because in one second.		
		(iii)	Q = mL OR m = Q/L OR m = $37.5 / 3.3 \times 10^5$ ecf from (b)(ii) m = 0.0001136 (kg) (in 1 s) Time taken = 2.76/0.000114 = 24300 s at least 2 significant figures. *Unit penalty applies	C1 C1 A1	
			OR P = Q/t OR t = Q/P OR t = mL/P $t = 2.76 \times 3.3 \times 10^5 / 37.5$ = 24300 s * Unit penalty applies	(C1) (C1) (A1)	[8]

*Apply unit penalty once onl

7	•	Faster / more energetic molecules escape / evaporate (from surface) Molecules left (in liquid) have lower average speed / energy so temperature is lower		B1 B1	
		•	२ atent) heat needed to evaporate / leave the surface mes from remaining liquid		
	(b)	(i)	Dull surface is <u>better</u> radiator / radiates <u>faster</u> OR Shiny surface is <u>poorer</u> radiator / radiates <u>slower</u>	B1	
		(ii)	C hotter (than A) OR A cooler (than C) (so evaporates at a faster rate in C)	B1	
	(iii)	Less liquid in D OR more liquid in A	B1	
	(iv)	E has <u>greater</u> (surface) area / more open to air / is <u>shallower</u> <u>greater</u> rate of loss of heat by evaporation / convection / conduction / radiation	B1 B1	[7]
					-