www.igexams.com

Thermal Properties and Temperature Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Thermal Properties and Temperature
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed:
Score:

Percentage:

58 minutes
/48
/100

www.igexams.com

1 (a mass of block m B1
initial temperature θ_{1} and final temperature θ_{2} B1
time of heating t B1
voltage/p.d. V AND current I B1
(b) $\quad(c=) V I t \div\left[m\left(\theta_{2}-\theta_{1}\right)\right]$
OR Pt $\div\left[m\left(\theta_{2}-\theta_{1}\right)\right]$ OR $E \div\left[m\left(\theta_{2}-\theta_{1}\right)\right]$ as appropriate to symbols defined in (a) numerator correctB1
denominator correct B1
(c) (more) thermal energy/heat lost (to surroundings) so temperature rise is less OR more thermal energy/heat input required for same temperature riseB1
[Total: 7]

2 (a

1. range M1
2. correct link between stem length and range/top temperature/expansion
(ii) 1. sensitivityM1
3. correct link between capilliary diameter and sensitivity/movement of thread
(b) (i) (coloured) alcohol (note: no mark for this point, but must be present for subsequent marks to be awarded)
(ii) any two from:

- water will freeze/alcohol doesn't freeze
- coloured alcohol (clearly) visible
- alcohol has even expansion/water has uneven expansion
- alcohol expands more/water expands less
- alcohol has lower SHC/thermal capacity
- alcohol does not stick to glassB2
[Total: 6]

www.igexams.com

3 (a (Q/E =) Pt or 2400×50
$(c=) Q / m \Delta T$ or $1.2 \times 10^{5} /(1.5 \times 32)$ (condone $2400 /(1.5 \times 32)$)
(allow e.c.f. from candidate's $Q=1.2 \times 10^{5}$)
$2.5 \times 10^{3} \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$ or $2.5 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$ (condone missing brackets) (allow e.c.f. from candidate's $Q=1.2 \times 10^{5}$)
(b) (student's value) too large and heat lost to surroundings/kettle/evaporation

B1
[Total: 5]

4 (a (i) e.g. freezing, solidification, condensation OR example e.g. water to ice, steam to water, gas to solid B1
(ii) No change
(b) Heat/energy required to change temperature of the body
by $1^{\circ} \mathrm{C} / 1 \mathrm{~K} / 1$ unit / 1 deg
OR
mass (of body) \times specific heat capacity
(c) (i) $Q=m c \theta$ OR in words OR $250 \times 4.2 \times 20$ $=21000 \mathrm{~J}$
(ii) 21000 J OR same as (c)(i)
(iii) $Q=m L$ OR $m=Q / L$ OR either in words OR 21000 $=m \times 330$ OR $m=21000 / 330$ $=63.6 \mathrm{~g}$ at least 2 s.f. C1 A1

www.igexams.com

5
(a (i) Glass / flask receives heat / rises in temperature B1
Glass / flask expands
(ii) Heat flows through glass to water OR Water receives heat / thermal energy from / conducted by glass OR Water temperature rises OR Water molecules move faster / gain K.E. Water expands / Water molecules move further apart B1
(iii) Glass / solid expands less OR water / liquid expands more B1
(b) Use a bigger flask OR a narrower tube OR Use a solid and a liquid that expand more

6 (a Heat required to change state of / melt $1 \mathrm{~kg} / 1 \mathrm{~g} /$ unit mass of solid (with no change of temperature)

Allow specific example e.g. ice to water NOT liquid to gas
(b) $\quad d=m / V$ in any form $O R(m=) V \times d$

OR ($\mathrm{m}=$) $0.25 \times 0.012 \times 920$
$=2.76 \mathrm{~kg}$ at least 2 significant figures. *Unit penalty applies
(ii) 60% of $250=150\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ OR $250 \times 0.25=62.5(\mathrm{~J})$

Heat absorbed in $1 \mathrm{~s}=150 \times 0.25=37.5(\mathrm{~J})$
OR 60% of $62.5=37.5 \mathrm{~J}$ OR J/s OR W *Unit penalty applies
Allow J / s or W because in one second.
(iii) $\mathrm{Q}=\mathrm{mL}$ OR $\mathrm{m}=\mathrm{Q} / \mathrm{L}$ OR $\mathrm{m}=37.5 / 3.3 \times 10^{5} \mathrm{ecf}$ from (b)(ii) C 1
$\mathrm{m}=0.0001136(\mathrm{~kg})$ (in 1 s) C1
Time taken $=2.76 / 0.000114=24300 \mathrm{~s}$ at least 2 significant figures. *Unit A1
penalty applies
OR
$P=Q / t O R t=Q / P O R t=m L / P$
$t=2.76 \times 3.3 \times 10^{5} / 37.5$
$=24300 \mathrm{~s}$ *Unit penalty applies
*Apply unit penalty once onl

www.igexams.com

7 (a Faster / more energetic molecules escape / evaporate (from surface) B1 Molecules left (in liquid) have lower average speed / energy so temperature is lowerB1
OR
(Latent) heat needed to evaporate / leave the surface
(b) (i) Dull surface is better radiator / radiates faster OR Shiny surface is poorer radiator / radiates slower B1
(ii) $\mathrm{C} \underline{\text { hotter (than } \mathrm{A})}$ OR A cooler (than C) (so evaporates at a faster rate in C) $\quad \mathrm{B} 1$
(iii) Less liquid in D OR more liquid in A B1
(iv) E has greater (surface) area / more open to air / is shallower B1 greater rate of loss of heat by evaporation / convection / conduction / radiation

