www.igexams.com

Thermal Properties and Temperature

Mark Scheme 5

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Thermal Properties and Temperature
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 5

Time Allowed:	56 minutes
Score:	$/ 47$
Percentage:	$/ 100$

www.igexams.com

1 (a) conduction rod/target/anode B1copper / thickness of rod B1good conductor / increases amount of conduction (of thermal energy)B1
(b) convection fins B1
large surface area / number of fins / spaces between fins B1large contact with air / allows air to rise between fins B1(c) radiation fins / black surface / end of rodB1
black surface / large surface area B1
good emitter / large radiating surface ignore absorber B1

www.igexams.com

2
(a) electrical method
lagged container + lid
liquid (allow) water $\quad 5$ points 3 heater in liquid heater connected to electrical supply (seen or stated) 4 points 2 voltmeter and ammeter appropriately connected (seen) thermometer

OR

mixtures method
lagged container
liquid
hot solid/hot liquid
means of heating hot solid / liquid (seen or stated)
5 points 3
4 points 2 3 points 1
means of weighing hot solid / liquid / use of known mass (seen or stated) thermometer B3
(ii) electrical method
initial \& final temps of liquid OR temp rise voltmeter reading (however expressed)
ammeter reading (however expressed) heating time mass of liquid
OR
mixtures method
initial and final temps of liquid OR temp rise initial and final temps of added solid / liquid OR temp drop mass of added solid / liquid mass of liquid
SHC of added solid / liquid $\quad \int$
B3
(b) $\quad Q=m c \theta$ in any form B1
100.6-12 OR 88.6 C1
$0.8 \times 3900 \times 88.6$ C1
276432 J A
(ii) $Q=W t \quad \mathrm{OR} \quad(t=)$ candidate's $(\mathrm{i}) / 620$
445.858 s ecf (i)

www.igexams.com

3 (a) energy / heat required to change state / phase / any example of change of state / phase
with no change in temperature / at a specified temperature A1
OR energy to break bonds between molecules /atoms M1
with no change in K.E. A1
(b) any time or range of time between $1.6(\mathrm{~min})$ and $14.0(\mathrm{~min})$ inclusive [no UP] B1
(c) turns substance to gas / vapour OR causes evaporation OR escape from liquid
energy to break bonds/separate molecules/overcome intermolecular forces Ignore move faster / PE increases
(d) (i) $\mathrm{Pt} / 2 \times 4 / 2000 \times 4 / 2 \times 240 / 2000 \times 240 / 8 / 8000 / 480 / 480000$
(ii) ($\theta=) 43\left({ }^{\circ} \mathrm{C}\right)$ seen anywhere
$Q=m c \theta$ OR $480000=m \times 1760 \times 43$ in any form ecf. from (i) C1
6.34 kg or 6.3 kg ecf. A1

4 (a (i) change in length / distance moved (accept "how much it expands") per unit / given temp rise OR equivalent
(ii) large bulb OR thin / narrow bore / tube / capillary NOT thin / narrow thermometer
(b) (i) difference between the highest and lowest temperatures ignore reference to fixed points
(ii) tube (sufficiently) long / not too short

OR bore wide/not too thin
OR little/not too much liquid/bulb NOT change liquid
(c) (i) idea of equal size divisions/expansion for equal temperature rises OR $\Delta l / \Delta \theta$ constant $O R$ reference to l against θ graph straight line ignore 1 division $=1^{\circ} \mathrm{C}$
(ii) uniform bore OR alcohol/liquid expands uniformly (with temp)

B1

www.igexams.com

$\begin{array}{ccc}5 & \text { (a } \begin{array}{l}\text { heat/energy to raise/change temperature } \\ \text { of } 1 \mathrm{~kg} / 1 \mathrm{~g} / \mathrm{unit} \text { mass through } 1^{\circ} \mathrm{C} / 1 \mathrm{~K} \\ \text { (mention of change of state scores zero) }\end{array} & \text { M1 } \\ & \text { A1 }\end{array}$
(b) $\mathrm{Q}=\mathrm{mc} \theta$ (for θ accept $\mathrm{t}, \mathrm{T}, \Delta \theta, \Delta \mathrm{t}$, or $\Delta \mathrm{T}$) B1
$23800=0.93 \times c \times(41.3-13.1) \quad$ C1
907.5 or 907 or 908 or $910 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$ or $\mathrm{J} /(\mathrm{kg} \mathrm{K})$ at least 2 sig. figs A1
(for unit in (b) and (c)(i) condone no brackets and extra solidus)
(c) 1212.9 or 1200 or 1210 or 1213 or $1214 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$ or $\mathrm{J} /(\mathrm{kg} \mathrm{K}) \quad$ B1
$\begin{array}{ll}\text { (ii) } \begin{array}{l}\text { more energy lost (to surroundings) } \\ \text { (average) temperature is higher/initial temperature higher/no cooling } \\ \text { time allowed/temperature rise is lower/time of heating may be longer/ } \\ \text { rate of heating may be lower }\end{array} & \text { B1 } \\ \end{array}$
(d) insulate block/provide lid/cover with shiny foil start \& finish same amount below \& above room temperature) get heater up to temperature before inserting put oil in gap between heater \& block
any $2 \quad \mathrm{~B} 1+\mathrm{B} 1$

