Thermal Properties and Temperature

Mark Scheme 9

IGCSE
Physics
CIE
Thermal Physics
Thermal Properties and Temperature
(Extended) Theory Paper
Mark Scheme 9

Time Allowed:	63 minutes
Score:	/52
Percentage:	/100

1	(a	three valid features listed without explanation	[1]
		any three features explained from:	
		copper/metal is a <u>good</u> conductor (of heat) NOT of electricity	
		black is <u>good</u> absorber/ <u>bad</u> reflector ignore emitter	
		insulating material will <u>reduce</u> heat lost/conducted away (from pipes/sheet) NOT <u>prevents</u> heat loss owtte	
		glass/trapping of air reduces/prevents convection/warm air being blown away	
		glass produces greenhouse effect/reference to far and near I.R. [max	3]
	(b)	$mc\theta$ OR 250 × 4200 × candidate's temperature difference 2.31 × 10 ⁷ (J) e.c.f. from previous line	[1] [1] [1] [1]
	(c)	valid <u>explanation</u> relating to at least one of the reasons below: note: if no explanation, this mark is not awarded even if more than three reasons are given	[1]
		any three reasons from: which direction roof faces estimate output of panels household needs / whether household will use all hot water cost of panel / installation time to recoup cost whether roof is shaded relevant environmental consideration (e.g. not using wood or other fuel to heat water) [max	3]
	(d)	nuclei join together, accept hydrogen for nuclei to produce a different element / helium (and energy)	[2]

2	(a (i)	 any 2 from: liquid molecules not in fixed positions / can move about / move past each other OR solid molecules have a fixed position liquid molecules have random arrangement OR solid molecules arranged regularly / in patterns / layers / lattice liquid molecules are (slightly) further apart (than solid molecules) OR reverse argument 	max. B2
	(ii)	energy / work / thermal energy / (latent) heat required AND to break bonds (between molecules) / to overcome attractive forces (between the molecules) / to increase the <u>potential</u> energy of the molecules	B1
	(b) (i)	$E = ml$ in any form OR ml OR 1.65×330000 = 540000 J OR 544 500 J	C1 A1
	(ii)	chemical (energy in body) converted to thermal / internal (energy)	B1
			[Total: 6]

3	(a	(i)	X-rays	B1
		(ii)	Infra-red	B1
	(b)	(i)	$v = f\lambda$ in any form OR $v \div f$ OR $3.0 \times 10^8 \div (2.45 \times 10^9)$ 0.12 m	C1 A1
		(ii)	$(Q =) ml \text{ OR } 150 \times 330$ 49 000 (J) OR 49 000 (J) OR 50 000 (J)	C1
			P = Q/t in any form OR (t =) Q/P OR (0.65 × 1100) OR 715 69 s	C1 A1
				[Total: 8]

2

4	(a	diagram shows (molecules) randomly positioned diagram shows most (molecules) touching/very closely spaced	M1 A1
	(b) (i)	(temperature) decreases	B1
	(ii)	more energetic/faster molecules escape from surface/overcome forces of attraction	B1
	(iii)	<i>E</i> = <i>ml</i> in any form OR <i>ml</i> 2900 J	C1 A1
	(iv)	 any two from: cover/decrease surface area reduce temperature reduce draught owtte increase humidity of air 	В2
			[Total: 8]
_			01
5	(a (i)	(g.p.e. =) mgh OR $0.15 \times 10 \times 1.8$ 2.7 J ignore minus sign	C1 A1
	(ii)	(k.e. OR 2.7 =) $\frac{1}{2}mv^2$ OR $\frac{1}{2} \times 0.15v^2$ (v^2 =) 36 6.0 m/s	C1 C1 A1
	(b) (i)	<u>initial</u> temperature (of metal) OR <u>final</u> temperature (of metal) OR temperature change (of metal)	B1
	(ii)	thermal energy transferred to something specific e.g. air/tube/stopper/ thermometer/surroundings/environment OR small spheres lost before/after weighing OR not all the spheres fall the same distance	B1
	(iii)	higher temperature increase OR calculate mean of (100) readings small measurements less accurate owtte	M1 A1
			[Total: 9]

(a (i) (i)	and (ii) marked together to maximum of 3 marks molecules escape/leave the liquid/form gas or vapour	B1
(ii)	evaporation OR heat/(thermal) energy needed for evaporation leaves sweat cool fast(er) molecules/high(er) energy molecules escape OR slow(er) molecules left behind heat flows from body to warm the sweat (so body cools)	ler B1 B1 B1
(b)	(Q =) $mc\Delta\theta$ OR mcT OR 60 × 4000 × 0.50 1.2 × 10 ⁵ J / 120 kJ	C1 A1
(ii)	Q = <i>mL</i> in any form OR (m =) <i>Q/L</i> OR either with numbers $(m = 1.2 \times 10^5 / 2.4 \times 10^6 =) 0.05$ kg e.c.f from (b)(i)	C1 A1
		[Total 7]

6