Thermal Process

Mark Scheme 1

Level	IGCSE		
Subject	Physics		
ExamBoard	CIE		
Торіс	Thermal Physics		
Sub-Topic	Thermal Process		
Paper Type	(Extended) Theory Paper		
Booklet	Mark Scheme 1		

Time Allowed:	62 minutes
Score:	/51
Percentage:	/100

1	(a	three valid features listed without explanation	[1]
		any three features explained from:	
		copper/metal is a <u>good</u> conductor (of heat) NOT of electricity	
		black is <u>good</u> absorber/ <u>bad</u> reflector ignore emitter	
		insulating material will <u>reduce</u> heat lost/conducted away (from pipes/sheet) NOT <u>prevents</u> heat loss owtte	
		glass/trapping of air reduces/prevents convection/warm air being blown away	
		glass produces greenhouse effect/reference to far and near I.R. [max	3]
	(b)	$mc\theta OR 250 \times 4200 \times candidate's temperature difference [2.31 × 107 (J) e.c.f. from previous line [$	[1] [1] [1] [1]
	(c)	valid <u>explanation</u> relating to at least one of the reasons below: [note: if no explanation, this mark is not awarded even if more than three reasons are given	[1]
		any three reasons from: which direction roof faces estimate output of panels household needs / whether household will use all hot water cost of panel / installation time to recoup cost whether roof is shaded relevant environmental consideration (e.g. not using wood or other fuel to heat water) [max	3]
	(d)	nuclei join together, accept hydrogen for nuclei to produce a different element / helium (and energy)	[2]

			[Total: 6]
	(c)	conduction takes place copper a good conductor/conduction is rapid/heat flows to equalise temperature	
	(b)	 b) left hand/palm (facing matt black side gets hotter) OR hand facing matt black side (gets hotter) matt black side is a better emitter/radiator (of heat than shiny side) 	
		(ii) air (between plate and hands) is a poor conductor/does not conduct	B1
3	(a	(i) heated air/warm air rises/moves up (not sideways)	B1
			[Total 6]
		made of insulator OR example of insulator to reduce/prevent (loss of heat by) convection/radiation/evaporation OR to prevent steam/hot air leaving	B1
	(b)	add a stopper/lid/bung/cover/top to reduce/prevent (loss of heat by) convection/ conduction/radiation/evaporation OR to prevent steam/hot vapour leaving	M1 B1
		 (ii) surface/silver (of walls) is good reflector/poor absorber (of radiation) surface/silver (of walls) is poor emitter (of radiation) 	B1 B1
2	(a	 (i) mention of vacuum OR glass is a poor conductor OR vacuum/gap between walls has no molecules/atoms/particles 	B1

				[Total	: 10]
		bla	ck absorbs (radiation) better, ignore anything about emission	A1	[2]
	(c)	bla	ck can/B	М	
			for both methods, ignore other modes of heat transfer, ignore place tiles around can		[2]
			OR alternative method put tiles under cans reduce, ignore prevent, conduction (to bench)	(M1) (A1)	
		(ii)	use tiles as lids reduce convection/evaporation (to room)	M1 A1	
			repeat readings		[4]
			correct detail of timing		
			observe change of temperature		
			thermometers not touching the metal of can		
			place thermometers in <u>same position</u> relative to each can/detail relating to stirring		
			pour (hot) water into both cans to same level/same amount		
			viable experiment e.g. pour in water and measure temperature ignore methods with external thermometers (for this point only)		
	(b)		any four from:	B4	
			ck radiates/emits more OR polished radiates/emits less ore anything about absorption	A1	[2]
4	(a		ck can/B loses heat energy quicker/cools faster polished can loses heat energy slower/cools slower	M1	

5	(a	(i)	(metals/they are) (good) conductors (of heat)	B1	[1]
		(ii)	(at hot end) molecules vibrate (more) or electrons identified as mechanism of conduction	B1	
			molecules collide with their neighbours or electrons move faster/have more energy	B1	
			energy/vibration passed on or electrons pass on energy/reach far end/free to move	B1	[3]
	(b)	imn det	ermine mass of spoon (condone weigh provided word mass is used in answer) nerse spoon in water/liquid ermine increase in volume/overflow <i>m</i> /V or density = mass/volume	B1 B1 B1 B1	[4]
				[Tota	ı l: 8]
6	(a)	(i) (current		
		(ii)	p.d. OR potential difference OR voltage	B1	
			Both required		
	(b)		$= R_1 + R_2 \text{ OR } 1.2 + 3.6 \text{ OR } 4.8 \text{ (k }\Omega)$	С	
		Vol	9.0 / 4.8 = 1.875 (mA) OR 9.0/4800 = 1.875 × 10 ^{−3} (A) tmeter reading = 6.75 V *Unit penalty applies	A1	
		= [3	tmeter reading = [R ₁ / (R ₁ + R ₂)] V 3.6 / (1.2 + 3.6)] × 9.0 .75 V *Unit penalty applies	(C1) (C1) (A1)	
	(c)	(In ⁻	fire) temperature of thermistor rises and its resistance falls	B1	

 (c) (In fire) temperature of thermistor rises and its resistance falls
 B1

 Current (through thermistor and relay coil) rises / flows
 B1

 OR voltage / p.d. across / of relay coil rises
 B1

 Magnetic field of relay closes switch (and bell rings)
 B1

*Apply unit penalty once onl