Thermal Process

Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Thermal Physics
Sub-Topic	Thermal Process
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed: 88 minutes

Score: /73

Percentage: /100

Question	Answer	Mark
1(a)	Gas molecules (very) far apart OR empty space between gas molecules Molecules of liquid (very) close together/compact OR are touching (each other)	B1 B1
(b)(i)	Faster/more energetic water molecules evaporate/escape/leave Slower/less energetic molecules remain (so temperature is lower)	B1 B1
(b)(ii)	Water in wide container AND has water with larger surface (area) Rate of evaporation higher/faster/quicker OR higher chance of evaporation	B1 B1
		Total: 6

[Total: 9]

2	(a Co	al, hydroelectric and wind boxes ticked	B2
	(b) (i)	Copper is a good conductor of thermal energy/heat Black surface is a good / the best absorber of radiation/infra red	B1
	(ii)	(Temp rise =) $72 - 20 = 52$ (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ 4100 J	C1 A1
	(iii)	Efficiency = (power) output/(power) input (× 100) OR $70 = \frac{(4100/5) \times 100}{\text{power input}}$ OR $\frac{(4100 \times 100)}{\text{power input}}$ OR rearranged Power input = 1200 W	C1 A1

3	(a	 energy/heat required to increase temperature of 1 kg / 1 g / unit mass (of the substance) by 1 °C / 1 K / unit temperature 	B1 B1
	(b)	$E = mc\Delta\theta$ in any form OR $(c =) E \div m\Delta\theta$ $E = Pt$ in any form OR 420×95 (= 39900) $\Delta\theta = [40.5 - 19.5]$ OR 21 $(c = 39900 \div 42 =) 950 \text{ J/(kg °C)}$	C1 C1 C1 A1
	(c)	 any two separate points from: lagging / insulation (around block) OR insulate (the block) raise temperature of block by a smaller amount OR heat for a shorter time OR use lower power heater for same time OR higher power for same temperature rise / shorter time polish the surface of the block OR wrap the block in shiny material OR paint (shiny) white reduce initial temperature of block (to below room temperature) OR raise temperature of room reduce draughts 	max. B2
			[Total: 8]
4	(a	same distance moved (by thread) for same temperature change	B1
	(b)	-10°C	B1
	(c)	 any two from: longer stem bigger bulb OR more liquid narrower bore OR thinner thread liquid with greater expansivity 	max. B2
	(d)	(i) falls from 100 °C with a decreasing gradient AND at a faster rate	B1
		finishes horizontal along 20 °C line	B1
		(ii) only bottom box ticked	B1
			[Total: 7]

5	(a	energy/heat needed to change state of substance/melt			
		(from solid to liquid at constant temperature/melting point) per kg/per unit mass			
	(b)	(i)	$(l_i=)$ Q ÷ m in any form: words, symbols, numbers	C1	
			340 J/kg OR 336 J/g OR equivalent in J/kg	A1	
		(ii)	$(c =) Q \div [m \Delta T]$ in any form: words, symbols, numbers 4.1 J / (g °C) OR 4100 J / (kg °C)	C1	
		(iii)	cold water denser AND sinks convection (current) OR circulation OR warmer water rises	B1 B1	
				[Total: 8]	
6	(a	(i)	reduces (rate of evaporation) NOT zero (rate of evaporation)	M1	
			no/fewer evaporated molecules removed by wind OR greater humidity/vapour pressure		
			NOT fewer molecules in liquid/puddle blown away	A1	
		(ii)	increases (rate of evaporation)	M1	
			molecules move faster/have more energy OR more molecules have energy to escape	A1	
	(b)	gre	eater (rate of evaporation) OR rate is less in small puddle		
		ign	ore rate of disappearance of puddle	B1	
		surface areas correctly compared			
	(c)	des	cription of viable experiment NOT absorption expt	M1	
		stat	tement of measurements to be made	A1	
		_	od detail e.g. thermometers in comparable positions OR pyrometer same ition relative to different surfaces	A1	
				[Total: 9]	

7	(a	(m	=) $Pt/l \mathbf{OR} 460 \times 180/2.3 \times 10^6 \mathbf{OR} 82 800/2.3 \times 10^6$		C1
		0.0	036 kg OR 36 g		A1
	(b)	(i)	any two from: (surface) area draught temperature (of water/room) humidity of air		B2
		(ii)	any two from: evaporation at any temperature/below boiling point evaporation (only) at the surface evaporation influenced by surface area/draught/temperature/humidity (not if given in (b)(i))		B2
				[Tota	al: 6]
8	(а	(nu	clear) fusion	B1	[1]
	(b)	(i)	smaller (surface) area (accept thinner, narrower(at top), ignore reference to lid)	B1	[1]
		(ii)	apparatus: black object, white object, thermometer(s)/ball-bearing with wax/level of water in vessel	B1	
			source of heat e.g. Sun/radiant heater (condone light bulb/Bunsen burner)	B1	
			action: (fill cans with water and) measure temperature rise or wax melts or compare volumes of water	B1	
			observation: water in black can (better absorber) has greater temperature increase / wax melts first / less water		
			note: emission experiment gains max. 2	B1	[4]
				[Tota	l: 6]

(a) T-shirt in wind/on L dries quicker OR T-shirt out of wind/on R dries slower M1 wind removes more evaporated molecules accept quicker NOT wind gives water molecules more KE **A1** [2] (b) T-shirt folded double/on R dries slower OR T-shirt unfolded/on L dries guicker M1 correct reference to smaller/larger surface area for molecules to evaporate OR water trapped (in fold) OR more humid in fold Α1 [2] (c) water evaporates from her hair B1 heat required for evaporation OR heat flows (from body/hair) to warm up cold water OR faster molecules escape leaving water cooler/lowering KE ignore: there is a cooling effect **B**1 [2]

[Total: 6]

10	(a)	turn on heater and wait until water starts dripping in beaker empty beaker & replace, start watch stop watch & remove beaker at same time record time find and record mass of water in beaker	B1 B1 B1 B1 B1	[M4]
	(b)	60 x t = 120 x 340 t = 680 s	C1 A1	[2]
	(c)	ice gains heat from surroundings/ice falls through funnel	В1	
	(ii)	lag or fit lid to funnel/place gauze in funnel bottom	B1	[2] Total [8]