Electromagnetic Spectrum

Mark Scheme 1

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Properties of Waves including Light and Sound
Sub-Topic	Electromagnetic Spectrum
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 1

Time Allowed: 78 minutes

Score: /65

Percentage: /100

Question	Answer	Mark
1(a)((i)	Sketch of <u>curved</u> optic fibre with light ray undergoing at least one total internal reflection	B1
(a)(ii)	Light travels down (optic) fibres into or out of body	B1
	To examine internal organ/part Light travels both ways into and out of body OR To destroy (cancerous) cells by heating	B1 B1 (B1) (B1)
	OR Endoscope/fibre bundle inserted into body To view internal organ body part OR for keyhole surgery	(B1) (B1)
(b)	Light in air: $3 \times 10^8 \text{ m/s}$ Microwaves in vacuum: $3 \times 10^8 \text{ m/s}$ Sound in steel: 6000 m/s	B1 B1 B1
(c)	n = speed in air/speed in glass (or rearranged) OR $1.5 = 3 \times 10^8$ /speed in glass (or rearranged) 2.0×10^8 m/s	C1 A1
		Total: 9

2	(a	clear attempt at semi circles, at least 3 same wavelength as incoming wavefronts, by eye	[1] [1]
	(b)	speed \div wavelength or 20 \div 2.5 or $v = f\lambda$ 8 Hz or 8 s ⁻¹ or 8 waves/second	[1] [1]
	(c)	candidate's (b) OR "the same" OR nothing	[1]
	(d)	low frequency signals have longer wavelength (than high frequency signals) OR high frequency signals have shorter wavelength	[1]
		low frequency signals / long wavelength signals diffract more OR low frequency / short wavelength signals diffract less	[1]

3 **(a (i)** X-rays B1 **(ii)** Infra-red B1 **(b) (i)** $v = f\lambda$ in any form OR $v \div f$ OR $3.0 \times 10^8 \div (2.45 \times 10^9)$ C1 0.12 m

[Total: {4]

4	(a (i) $2.0 - 4.0 \times 10^8$ m/s *Unit penalty applies		B1
	(ii) (f =) v/λ or $3.0 \times 10^8/4.0 \times 10^{-7}$ 7.5 × 10^{14} Hz *Unit penalty applies	ecf from 6(a)(i) ecf from 6(a)(i)	C1 A1
	(b) (i) 55° *Unit penalty applies		B1
	(ii	sin i/sin r = n or sin 55°/1.5 or 0.54610 33° *Unit penalty applies	ecf from 6(b)(i) ecf from 6(b)(i)	C1 A1 [6]

^{*}Apply unit penalty once onl

5 (a (i) light of a single wavelength / frequency ignore 'one colour' B1 (ii) $n = \sin i / \sin r$ OR 1.52 = $\sin 50 / \sin r$ OR $\sin r = \sin 50 / 1.52$ C1 30.26° at least 2 s.f. Α1 В1 (iii) ray closer to normal in block ray parallel to incident ray emerging from block В1 **(b) (i)** $n = v_A/v_G$ OR $n = 1.54/v_G$ OR $v_G = 3 \times 10^8/1.54$ C1 $1.948 \times 10^8 \,\mathrm{m/s}$ (ii) ray with smaller angle of refraction than red in block i.e. violet ray under red ray B1 emerging ray parallel to incident ray B1 [9]

(ii) sound

(iii) particle OR mechanical OR compression OR longitudinal OR matter wave

(iii) ultra violet/uv

(b)
$$v = f\lambda$$
 OR $\lambda = v/f$
 $3.0 \times 10^8/2.5 \times 10^8$ OR $3.0 \times 10^8 = 2.5 \times 10^8 \lambda$
C1
1.2 m

[Total: 6]

7	(a		ray refracted away from normal et ray refracted more than red ray in prism	B1 B1	
		viole	et ray further refracted from red ray to screen	B1	3
	(b)	1.52	2 = sin 40°/sin r	M1	
	` ,		$r = \sin 40^{\circ} / 1.52 (= 0.423)$	C1	
		r = 2	,	A1	3
	(c)	(i)	$3 \times 10^8 \text{ m/s}$	A1	
		(ii)	same as (i)	A1	2 [8]

(a	(i) (ii)	x-rays or gamma ra infra red or radio	B1 B1	2
(b)		$f = v/\lambda \text{ or } 3 \times 10^8 / 1 \times 10^{-12}$ = $3 \times 10^{20} \text{ Hz}$	C1 A1	2
(c)		3 x 10 ⁸ m/s	1	1 [5]
(c)		3 x 10° m/s		1

9	(a)	expect two internal reflections at sensible angles	1	1
	(b)	angle of incidence at Y greater than critical angle total internal reflection occurs	1 1	2
	(c) (i)	frequency = velocity/wavelength or $1.9 \times 10^8/3.2 \times 10^{-7}$ = 5.9×10^{14} Hz	1 1	
	(ii)	refractive index = 3/1.9 or 1.9/3 = 1.58 (no e.c.f.)	1 1	4 (7)