General wave properties

Question Paper 4

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Properties of Waves including Light and Sound
Sub-Topic	General Wave Properties
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 4

Time Allowed: 47 minutes

Score: /39

Percentage: /100

1 (a) Fig. 6.1 represents the waveform of a sound wave. The wave is travelling at constant speed.

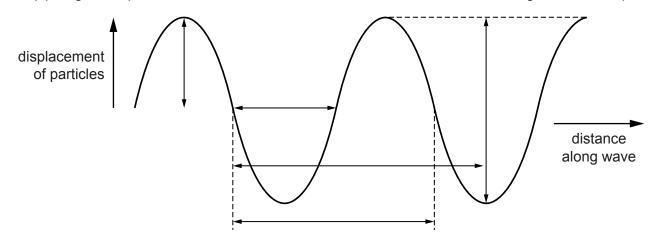


Fig. 6.1

- (i) On Fig. 6.1,
 - label with the letter X the marked distance corresponding to the amplitude of the wave,
 - label with the letter Y the marked distance corresponding to the wavelength of the wave.
- (ii) State what happens to the amplitude and the wavelength of the wave if
 - 1. the loudness of the sound is increased at constant pitch,

amplitude	
•	
wavelength	
	[1]

2. the pitch of the sound is increased at constant loudness.

amplitude	
wavelength	
	[1]

(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms. The speed of sound in seawater is 1500 m/s.

Calculate the depth of the sea beneath the ship.

depth =[3]

[Total: 7]

-	a) A (i)	sound wave in air consists of alternate compressions and rarefactions along its path. Explain how a compression differs from a rarefaction.	
((ii)	Explain, in terms of compressions, what is meant by	[1]
		1. the wavelength of the sound,	
		2. the frequency of the sound.	
			[1]
		ight, bats emit pulses of sound to detect obstacles and prey. The speed of sound in air m/s.	is
	(i)	A bat emits a pulse of sound of wavelength 0.0085 m.	
		Calculate the frequency of the sound.	
		frequency =	[2]
((ii)	State why this sound cannot be heard by human beings.	
(i	iii)	The pulse of sound hits a stationary object and is reflected back to the bat. The pulse received by the bat 0.12s after it was emitted.	is
		Calculate the distance travelled by the pulse of sound during this time.	

distance =[2]

3 (a) Fig. 6.1 shows an object O placed in front of a plane mirror M. Two rays from the object to 3 mirror are shown.

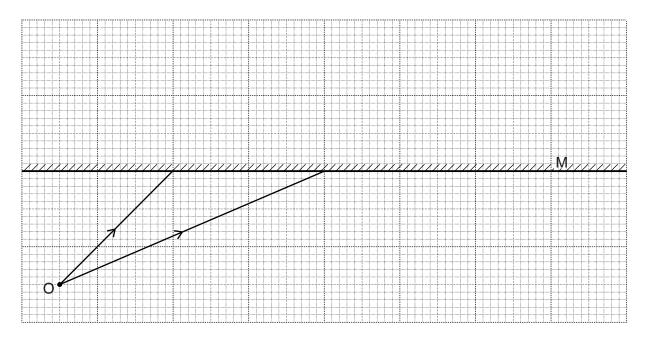


Fig. 6.1

- (i) On Fig. 6.1, for **one** of the rays shown,
 - 1. draw the normal to the mirror,
 - 2. mark the angle of incidence. Label this angle X.

[2]

- (ii) On Fig. 6.1, draw
 - 1. the reflected rays for both incident rays,
 - **2.** construction lines to locate the image of O. Label this image I.

[2]

(b) In Fig. 6.2, circular wavefronts from a point source in a tank of water strike a straight barrier.

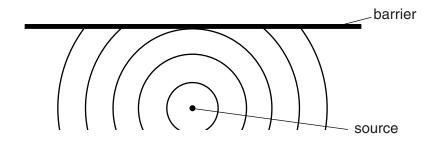


Fig. 6.2

- (i) The reflected wavefronts seem to come from a single point.
 - On Fig. 6.2, mark a dot to show the position of this point. Label this point C.
- (ii) Draw, as accurately as you can, the reflected circular wavefronts. [2]

[Total: 7]

[1]

4	(a)	A police car siren emits sound waves that vary in pitch.	
		Tick two boxes that apply to the sound waves emitted by the siren.	
		electromagnetic	
		longitudinal	
		transverse	
		visible	
		frequency 0.1–10 Hz	
		frequency 100-10000Hz	
		frequency 100 000-1 000 000 Hz	
			[2]
	(b)	Fig. 7.1 is a top view of one wavefront of a water wave before it strikes a hard boundary.	
		boundary	
		7	
		direction of travel of wavefront wavefront	
		Fig. 7.1	
		(i) Name the process that occurs as the wavefront strikes the boundary.	
			. [1]

(ii)	Explain, in terms of wave theory, what occurs as the wavefront strikes the boundary.
	[2]
iii)	State whether there is an increase, a decrease or no change in the wavelength of the wave after it strikes the boundary.
	[1]
iv)	The speed of the wave is 3.0 m/s and its wavelength 7.0 cm.
	Calculate the frequency of the wave.
	frequency =[2]
	[Total: 8]

During a thunderstorm, thunder and lightning are produced at the same time.								
(a) A person is some distance away from the storm.								
	Ехр	lain why the person sees the lightning befo	re hea	ring the	e thund	ler.		
								[1]
(b)	A so	cientist in a laboratory made the following r	neasur	ement	s durinç	g a thui	ndersto	orm.
time fro	m st	art of storm/minutes	0.0	2.0	4.0	6.0	8.0	10.0
time be	twee	en seeing lightning and hearing thunder/s	3.6	2.4	1.6	2.4	3.5	4.4
		Fig. 7.1						
	(i) How many minutes after the storm started did it reach its closest point to the laboratory?							
	(ii) How can you tell that the storm was never immediately over the laboratory?							
((iii) When the storm started, it was immediately above a village 1200 m from the laboratory.						om the	
		Using this information and information from	m Fig. [·]	7.1, ca	culate [·]	the spe	eed of s	sound.
		speed of so	und =					[2]

	(iv)	State the assumption	on you made when you	calculated your answer	to (b)(iii) .
					[1]
(c)	Som	ne waves are longitud	dinal; some waves are tr	ansverse.	
	Som	ne waves are electror	magnetic; some waves a	are mechanical.	
		` '	below to indicate which d the sound waves of the	•	apply to the light
			light waves	sound waves	
		longitudinal			
		transverse			
		electromagnetic			
		mechanical			

[3]

[Total: 9]