Electric circuits

Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic	Electric circuits
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed: 51 minutes

Score: /42

Percentage: /100

1	(a	(i)	$I_1 = I_2 + I_3$	B1
		(ii)	$I_1 = I_4$ OR same	B1
	(b)	(i)	$(V = IR = 0.80 \times 3.0 =) 2.4 \text{ V}$	A1
		(ii)	$I=V/R$ in any algebraic form OR 2.4 / 2 OR (b)(i) / 2 OR any voltage divided by 2 $(I_3=V/R=2.4$ / 2 =) 1.2 A OR $I_3/I_2=3/2$ $I_3=3/2\times0.8$ A = 1.2 A	C1 A (C1) (A1
		(iii)	(I_2+I_3) OR Current through $R=0.8+1.2)=2.0$ (A) OR 6V / 2A used Parallel combination formula: $1/r=1/r_1+1/r_2$ OR $(r=)$ $r_1r_2/(r_1+r_2)$ Use of formula: combined resistance = 1.2 (Ω) ($R+1.2=6/2=3.0$ Ω) $R=)$ 1.8 Ω) OR Current through $R=0.8+1.2=2.0$ (A) P.D. across $R=6.0-2.4=3.6$ (V) $R=3.6$ / $2.0=1.8$ Ω	C1 C C A1 (C1) (C1) (A1) [Total: 9]
2	(a) -	Trans	sistor	B1
	(b)	Ligh	sistor / variable resistor / rheostat identified nt-dependent resistor / LDR identified sistor or alternative in gap A; LDR in gap B	B1 B1 B1
	(c)		ermistor / thermal resistor / heat or temperature dependent resistor identified ermistor (or alternative name) in gap A <u>and</u> resistor in gap B	B1 B1
				[Total: 6]

3	(a	(i)	total $R = 320 (\Omega)$ or V per lamp = 6 (V) $I = (240/320 \text{or} 6/8 =) 0.75 \text{A}$ ecf from previous line	A1	[2]
		(ii)	use of $P = VI$ OR I^2R OR V^2/R 4.5 W ecf from (a)(i)	C1 A1	[2]
	(b)	tota no. ma:	istance of each lamp = $8 \times 1.05 = 8.4 (\Omega)$ al $R = 240/0.9 = 266.7 (\Omega)$ OR V per lamp = $8.4 \times 0.9 = 7.56 (V)$ of lamps (= $266.7/8.4$) = 31.7 OR (= $240/7.56$) = 31.7 x. no. of failed lamps = 8 tept reverse logic	B1 B1 B1	[4]
				[Tota	l: 8]
4	(a)	1/8	= $1/R_1 + 1/R_2$ or $R = R_1 R_2/(R_1 + R_2)$ or $R_1 R_2/(R_1 + R_2)$ or use of = $1/24 + 1/X$ OR $8 = 24R/(24 + R)$ or calculations/clear logic to eliminate ang values Ω	C1 C1 A1	[3]
	(b)		battery and resistors correct, condone twin small circles, cell, zig-zag resistors ammeter correct position ignore switches, condone breaks in circuit ≤ 1 mm condone wrong symbols if clear two resistors in series scores 0/2 as ammeter cannot be in right place	B1	[2]
		(ii)	use of I = V/R in any form or V/R 24 Ω resistor: I = (6/24=) 0.25 A other resistor: I = 6/his (a) correctly evaluated (6/12 = 0.5A) accept 1 s.f. if exact if contradiction between answer of (a) in working and answer in answer line, base marking on answer line	B1 B1	[3]
			bass manning on anomor into	יכ	[0]

5	(a	(i)	(I =) V/R or 230/46 5.0 A *Unit penalty applies	C1 A1	
		(ii)	(P =) IV or V^2/R or I^2R or 230×5 or $230^2/46$ or $5^2 \times 46$ ecf from 8(a)(i) 1100/1150/1200 W *Unit penalty applies ecf from 8(a)(i)	C1 A1	
	(b)	san	ne as 8(a)(i) (c.a.o.) *Unit penalty applies	B1	[5]
	*Ap	oply ι	unit penalty once onl		
6	(a)	(i)	light-dependent resistor/LDR	B1	
		(ii)	(in bright light) resistance of Z/LDR/circuit falls/is low current rises/is large/(starts to) flow/more p.d. across R relay (coil) magnetises/attracts/is magnet switch closes/completes second circuit	B1 B1 B1 B1	
	(b)) the	ermistor replaces LDR or LDR removed and thermistor added	B1	[6]