www.igexams.com

Electric circuits Mark Scheme 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic	Electric circuits
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Time Allowed:	51 minutes
Score:	$/ 42$
Percentage:	$/ 100$

www.igexams.com

1 (a (i) $I_{1}=I_{2}+I_{3}$
(ii) $I_{1}=I_{4}$ OR same
(b) (i) $(V=I R=0.80 \times 3.0=) 2.4 \mathrm{~V}$
(ii) $I=V / R$ in any algebraic form OR $2.4 / 2$ OR (b)(i) / 2

OR any voltage divided by 2
($\left.I_{3}=V / R=2.4 / 2=\right) 1.2 \mathrm{~A}$
OR
$I_{3} / I_{2}=3 / 2$
$I_{3}=3 / 2 \times 0.8 \mathrm{~A}=1.2 \mathrm{~A}$
(iii) $\left(I_{2}+I_{3}\right.$ OR Current through $\left.R=0.8+1.2\right)=2.0$ (A)

OR 6V/2Aused
Parallel combination formula: $1 / r=1 / r_{1}+1 / r_{2}$
OR ($r=$) $r_{1} r_{2} /\left(r_{1}+r_{2}\right)$
Use of formula: combined resistance $=1.2(\Omega)$
$(R+1.2=6 / 2=3.0 \Omega \quad R=) 1.8 \Omega$
OR
Current through $R=0.8+1.2=2.0(\mathrm{~A})$
P.D. across $R=6.0-2.4$
$=3.6(\mathrm{~V})$
$R=3.6 / 2.0=1.8 \Omega$

2 (a) Transistor
(b) Resistor / variable resistor / rheostat identified B1
Light-dependent resistor / LDR identified B1
Resistor or alternative in gap A; LDR in gap B B1
(c) Thermistor / thermal resistor / heat or temperature dependent resistor identified B1
Thermistor (or alternative name) in gap A and resistor in gap B

www.igexams.com

3
(a (i) total $R=320(\Omega)$ or V per lamp $=6(\mathrm{~V})$
$I=(240 / 320$ or $6 / 8=) 0.75$ A ecf from previous line

A1
(ii) use of $P=V I$ OR $I^{2} R$ OR V^{2} / R
4.5 W ecf from (a)(i)
(b) resistance of each lamp $=8 \times 1.05=8.4(\Omega)$
total $R=240 / 0.9=266.7(\Omega)$ OR V per lamp $=8.4 \times 0.9=7.56(\mathrm{~V})$
no. of lamps $(=266.7 / 8.4)=31.7$ OR $(=240 / 7.56)=31.7$
B1
max. no. of failed lamps $=8$
accept reverse logic
B1
[Total: 8]

4
(a) $1 / R=1 / R_{1}+1 / R_{2}$ or $R=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ or $R_{1} R_{2} /\left(R_{1}+R_{2}\right) \quad$ or use of $1 / 8=1 / 24+1 / X$ OR $8=24 R /(24+R)$ or calculations/clear logic to eliminate wrong values
12Ω
(b) battery and resistors correct, condone twin small circles, cell, zig-zag resistors
ammeter correct position
ignore switches, condone breaks in circuit $\leq 1 \mathrm{~mm}$ condone wrong symbols if clear
two resistors in series scores $0 / 2$ as ammeter cannot be in right place
(ii) use of $I=\mathrm{V} / \mathrm{R}$ in any form or V / R
24Ω resistor: $I=(6 / 24=) 0.25 \mathrm{~A}$
other resistor: $I=6 /$ his (a) correctly evaluated $(6 / 12=0.5 \mathrm{~A}) \quad$ accept 1 s.f. if exact
if contradiction between answer of (a) in working and answer in answer line, base marking on answer line

B1
B1
C1

C1
A1

www.igexams.com

5 (a (i) (I =) V/R or 230/46 C1
5.0 A *Unit penalty applies A1(ii) $\quad(P=) I V$ or V^{2} / R or $I^{2} R$ or 230×5 or $230^{2} / 46$ or $5^{2} \times 46$ecf from 8(a)(i)C1
1100/1150/1200W *Unit penalty applies ecf from 8(a)(i) A1
(b) same as 8(a)(i) (c.a.o.) *Unit penalty applies B1*Apply unit penalty once onl
6 (a) (i) light-dependent resistor/LDR B1
(ii) (in bright light) resistance of Z/LDR/circuit falls/is low B1
current rises/is large/(starts to) flow/more p.d. across R B1
relay (coil) magnetises/attracts/is magnet B1
switch closes/completes second circuit B1
(b) thermistor replaces LDR or LDR removed and thermistor added

