Electric circuits

Question Paper 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Торіс	Electricity and Magnetism
Sub-Topic	Electric circuits
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 3

Time Allowed:	51 minutes
Score:	/42
Percentage:	/100

1 This question refers to quantities and data shown on the circuit diagram of Fig. 9.1.

- (a) State the relationship between
 - (i) the currents I_1 , I_2 and I_3 ,[1]
 - (ii) the currents I_1 and I_4 . [1]
- (b) The ammeter reads 0.80 A. Assume it has zero resistance.

Calculate

(i) the potential difference between X and Y,

p.d. =[1]

(ii) the current I_3 ,

(iii) the resistance of R.

resistance =[4] [Total: 9]

2 Fig. 11.1 shows part of a circuit designed to switch on a security lamp when it gets dark.

When there is a current in the relay coil, switch S closes and the lamp L comes on.

(a)	Write down the name of the component X. [1]
(b)	The circuit has gaps at A and at B.
	State the components that need to be connected into these gaps for the circuit to perform its required function.
	gap A
	gap B[3]
(c)	The circuit in Fig. 11.1 is modified. The function of lamp L is now to give a warning when the temperature becomes too high.
	State any necessary changes of components in the circuit.
	[Total: 6]

- **3** 40 lamps, each of resistance 8.Ω, are connected in series to a 240 V supply in order to decorate a tree.
 - (a) Calculate
 - (i) the current in each lamp,

(ii) the power dissipated in each lamp.

(b) The lamps are designed to "fail-short". If a filament fails, the lamp shorts so that it has no resistance. The other lamps continue to light and the current increases.

The lamps are connected through a fuse that blows when the current rises above 0.9A. At this current, the resistance of each lamp is 5% greater than its normal working resistance.

Calculate the maximum number of lamps that can fail before the fuse blows.

number of lamps =[4]

[Total: 8]

4 (a) Determine which one of the following resistors, connected in parallel with a 24.0 resistor, would give a total resistance of 8.0Ω . Show your working.

Available resistors: 2.0Ω , 4.0Ω , 6.0Ω , 8.0Ω , 12.0Ω , 16.0Ω , 18.0Ω , 32.0Ω

value of resistor =[3]

(b) (i) In the space below, draw the parallel combination of resistors from (a) connected in a circuit with a 6.0V battery. The circuit should also include an ammeter to measure the current in the 24.0Ω resistor.

[2]

(ii) Calculate the current in each of the resistors when connected as in (b)(i). Show your working.

current in 24.0Ω resistor = [3]

5 An electric heater is connected to a 230V mains supply. The heater circuit includes two resistors R_1 and R_2 , and two switches S_1 and S_2 . Fig. 8.1 is the circuit diagram.

The resistance of R_1 is $46\,\Omega$ and the resistance of R_2 is also $46\,\Omega.$

Switch S_1 is closed and switch S_2 remains open.

- (a) Calculate
 - (i) the current from the mains supply,

(ii) the power dissipated in the heater.

(b) Switch S_2 is now closed.

State the current in R₂.

[Total: 5]

6 A warning bell is fitted in a photographic dark room. In the dark, the bell is silent but in bright light, it rings. Two circuits linked by a relay R control the bell B. Fig. 10.1 is the circuit diagram for the arrangement.

- (a) (i) State the name of component Z.
 -[1]
 - (ii) Explain why B rings in bright light.

[4]

(b) A change is made to one of the circuits so that B starts to ring when the temperature in the room rises.

State the change made.

.....[1] [Total: 6]