www.igexams.com

Electric circuits
 Question Paper 3

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic	Electric circuits
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 3

Time Allowed:	51 minutes
Score:	$/ 42$
Percentage:	$/ 100$

www.igexams.com

1 This question refers to quantities and data shown on the circuit diagram of Fig. 9.1.

Fig. 9.1
(a) State the relationship between

(b) The ammeter reads 0.80 A . Assume it has zero resistance.

Calculate
(i) the potential difference between X and Y ,
p.d. =

www.igexams.com

(ii) the current I_{3},
current = ... [2]
(iii) the resistance of R.
[Total: 9]

www.igexams.com

2 Fig. 11.1 shows part of a circuit designed to switch on a security lamp when it gets dark.

Fig. 11.1
When there is a current in the relay coil, switch S closes and the lamp L comes on.
(a) Write down the name of the component X .
(b) The circuit has gaps at A and at B.

State the components that need to be connected into these gaps for the circuit to perform its required function.
gap A \qquad
gap B \qquad
(c) The circuit in Fig. 11.1 is modified. The function of lamp L is now to give a warning when the temperature becomes too high.

State any necessary changes of components in the circuit.
\qquad
\qquad
\qquad

www.igexams.com

340 lamps, each of resistance $8 . \varrho$, are connected in series to a 240 V supply in order to decorate a tree.
(a) Calculate
(i) the current in each lamp,

> current =
(ii) the power dissipated in each lamp.
power =
(b) The lamps are designed to "fail-short". If a filament fails, the lamp shorts so that it has no resistance. The other lamps continue to light and the current increases.

The lamps are connected through a fuse that blows when the current rises above 0.9 A . At this current, the resistance of each lamp is 5% greater than its normal working resistance.

Calculate the maximum number of lamps that can fail before the fuse blows.

www.igexams.com

4 (a) Determine whichone of the following resistors, connected in parallel with a 24.0 resistor, would give a total resistance of 8.0Ω. Show your working.

Available resistors: $2.0 \Omega, 4.0 \Omega, 6.0 \Omega, 8.0 \Omega, 12.0 \Omega, 16.0 \Omega, 18.0 \Omega, 32.0 \Omega$
value of resistor =
(b) (i) In the space below, draw the parallel combination of resistors from (a) connected in a circuit with a 6.0 V battery. The circuit should also include an ammeter to measure the current in the 24.0Ω resistor.
[2]
(ii) Calculate the current in each of the resistors when connected as in (b)(i). Show your working.

www.igexams.com

5 An electric heater is connected to a 230 V mains supply. The heater circuit includes two resistors R_{1} and R_{2}, and two switches S_{1} and S_{2}. Fig. 8.1 is the circuit diagram.

Fig. 8.1
The resistance of R_{1} is 46Ω and the resistance of R_{2} is also 46Ω.
Switch S_{1} is closed and switch S_{2} remains open.
(a) Calculate
(i) the current from the mains supply,
current =
(ii) the power dissipated in the heater.
power =
(b) Switch S_{2} is now closed.

State the current in R_{2}.
current =

www.igexams.com

6 A warning bell is fitted in a photographic dark room. In the dark, the bell is silent but in bright light, it rings. Two circuits linked by a relay R control the bell B. Fig. 10.1 is the circuit diagram for the arrangement.

Fig. 10.1
(a) (i) State the name of component Z.
\qquad
(ii) Explain why B rings in bright light.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A change is made to one of the circuits so that B starts to ring when the temperature in the room rises.

State the change made.
\qquad
\qquad

