Electric circuits

Question Paper 8

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic	Electric circuits
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 8

Time Allowed: 90 minutes

Score: /75

Percentage: /100

1 Fig. 8.1 shows a circuit containing a battery of electromotive force (e.m.f.) 12V and a heater of resistance 6.0Ω .

Fig. 8.1

(a)	Sta	te what is meant by electromotive force (e.m.f.).
		[1]
(b)	(i)	Calculate the current in the heater.
		current =[2]
	(ii)	State the name of the particles that flow through the heater.
		[1]
	(iii)	On Fig. 8.1, draw an arrow next to the heater symbol to show the direction of flow of these particles through the heater. [1]
(c)	Cal	culate the thermal energy produced in the heater in 10 minutes.

thermal energy =[2]

[Total: 7]

2 (a) Fig. 9.1 shows the symbol for a logic gate.

Fig. 9.1

(i) State the name of this gate.

.....

(ii) On Fig. 9.1, clearly label an input and an output.

[2]

(b) In the space below, draw the symbol for a fuse.

[1]

(c) Fig. 9.2 shows a circuit.

Component A is not emitting light. It only emits light when the p.d. across it is greater than 1V.

(i) A change to the environment around component B causes component A to emit light.State the environmental change.

.....[1]

(ii)	Explain your answer to (i).
	[3]

(d) The combined resistance of the two resistors shown in Fig. 9.3 is $4.0\,\Omega$.

Fig. 9.3

Calculate the resistance of resistor R.

resistance of R =[2]

[Total: 9]

3

A cl	harg	er for a cellpho	ne (mobile pho	one) is marked:		
		input: output:	a.c. 240 V, 50 d.c. 5.3 V, 50			
(a)	Sta	te				
	(i)			er that converts a.c	to d.c.,	
	(ii)	the quantity th	nat has the val	ue 50 Hz.		
		•••••				[2]
(b)	Cal	culate				
	(i)	the output pov	wer of the cha	rger,		
				output	oower =	[2]
	(ii)	the energy tra	insferred in the		n the cellphone is char	
	(")	the energy the		output circuit write	in the comphone is char	ged for 1.5 flours.
				е	nergy =	[2]
(c)	In t	ne following list	, underline the	quantity that is sto	ored in the battery of the	e cellphone.
		voltage	Current	Power	energy	[1]
						[Total: 7]

4	(a)	Sta	te the relationship between	
		(i)	the resistance R and the length L of a wire of constant cross-sectional area,	
		(ii)	the resistance <i>R</i> and the cross-sectional area <i>A</i> of a wire of constant length.	
				[1]
	(b)	A 6	0W filament lamp X is connected to a 230V supply, as shown in Fig. 9.1.	
			230 V X Fig. 9.1	
		Cal	culate the current in the filament.	
			current =	เว
			Guireit =	[4

(c)	Lamp Y has a filament made of the same metal as the filament of lamp X in (b) .
	This filament has half the length and one-third of the cross-sectional area of the filament of X.
	Lamp Y is also connected to a 230 V supply.
	Calculate the ratio $\frac{\text{current in filament of Y}}{\text{current in filament of X}}$. Show your working.
	TAT
	ratio =[4]
	[Total: 7]

) (a) A piece of wire has a resistance of 0.45Ω .

Calculate the resistance of another piece of wire of the same material with a third of the length and half the cross-sectional area.

resistance =[3]

(b) Fig. 8.1 shows a circuit with three resistors, a power supply and four voltmeters.

Fig. 8.1

(i)	Calculate the combined resistance of the three resistors.	
	resistance =	[3]
(ii)	Write down two relationships for the currents in the circuit.	
		[2]
(iii)	Write down two relationships for the voltmeter readings in the circuit.	
		[2]
		[Total: 10]

6 A student carries out an experiment with the circuit shown in Fig. 11.1. The component in the dashed box labelled X is a diode.

Fig. 11.1

- (a) On Fig. 11.1, draw the correct symbol for a diode, connected either way round, in the dashed box labelled X. [1]
- (b) (i) +6.0V is applied to point A, 0V to point B.

State what the student observes on the ammeter.

(ii) -6.0 V is applied to point A, 0 V to point B.

State what the student observes on the ammeter.

[2]

(c) The voltage shown in Fig. 11.2 is applied to the point A of the circuit in Fig. 11.1. Point B is kept at 0V.

On Fig. 11.2, draw a graph of the readings indicated by the voltmeter.

Fig. 11.2

(d) The circuit shown in Fig. 11.3 contains two switches $\rm S_1$ and $\rm S_2$ and two indicator lamps $\rm L_1$ and $\rm L_2$.

Fig. 11.3

- (i) Name component Z.[1]
- (ii) Complete the table to state whether the lamps are on or off with the switches in the positions stated.

switch S ₁	switch S ₂	lamp L ₁	lamp L ₂
open	closed		
closed	open		

[2]

[Total: 8]

7 The circuit of Fig. 4.1 is set up to run a small immersion heater from a 6.0V battery.

Fig. 4.1

name	 	 	 	
purpose	 	 	 	[1

- **(b)** The heater is designed to work from a 3.6V supply. It has a power rating of 4.5W at this voltage.
 - (i) Calculate the current in the heater when it has the correct potential difference across it.

(ii) Calculate the resistance of component X if there is to be the correct potential difference across the heater. The battery and the ammeter both have zero resistance.

resistance =[3]

(c)	Sor	ne time after the heater is switched on, the ammeter reading is seen to have decreased.
	Sug	ggest why this happens.
		[1
(d)		an alternative to running the heater from a battery, it is decided to construct a circuit to ble it to be operated from the a.c. mains supply.
	Nan	ne the electrical component needed to
	(i)	reduce the potential difference from that of the mains supply down to a potential difference suitable for the heater,
		[1]
	(ii)	change the current from a.c. to a current which has only one direction.
		[1]
		[Total: 9]

8 Fig. 7.1 shows how the resistance of the filament of a lamp changes as the current through the lamp changes.

Fig. 7.1

	[2]
^,	Describe now the resistance of the lamp changes.

(b)	For	r a current of 0.070 A, find		
	(i)	the resistance of the lamp, resistance =	[1]	
	(ii)	the potential difference across the lamp,		
	(iii)	potential difference = [the power being dissipated by the lamp.	[2]	
		power =[2]	
(c)	Two	Two of these lamps are connected in parallel to a cell. The current in each lamp is 0.070 A.		
	(i)	State the value of the e.m.f. of the cell. e.m.f. =[[1]	
	(ii)	Calculate the resistance of the circuit, assuming the cell has no resistance.		
		resistance =[[2]	
		[Total: 1	0]	

9 Fig. 10.1 shows a battery with an e.m.f of 12 V supplying power to two lamps.

The total power supplied is $150\,\mathrm{W}$ when both lamps are on.

Fig. 10.1

(a) Calculate the current supplied by the battery when both lamps are on.

(b) The current in lamp L_2 is 5.0 A.

Calculate

(i) the current in lamp L_1 ,

current =

(ii)	the power of lamp L ₁ ,	
(iii)	the resistance of lamp L_1 .	power =
		resistance =[6]
		[Total : 8]