www.igexams.com

Electrical Quantities
 Mark Scheme 4

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic	Electrical quantities
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 4

Time Allowed:	$\mathbf{4 9}$ minutes
Score:	/41
Percentage:	/100

www.igexams.com

1 (a) release of electrons due to heating/high temperature/heater
(b) X- and Y-plates labelled B1
anodes either order, labelled, either plates/cylinders with holes B1closed tube of sensible shapeAND cathode AND anode(s) AND X- \& Y- plates, all three features in correctorderlabels not needed for last mark but if given must be correctB1
(c) change current in filament/cathode/heater IGNORE limit OR change temperature/heat/power/energy of filament/cathode/heater OR change cathode-anode p.d./voltage
OR change charge/voltage of grid B1
(d) $\quad(I=) Q / t$ in any form C1
0.0019 A OR $1.9 \times 10^{-3} \mathrm{~A}$ OR 1.9 mA A1
(ii) ($E=$) VIt OR VQ in any form, words, symbols, numbers (accept $\mathrm{t}=5 \mathrm{~s}$) C1
190 J OR candidate's $I \times 100000$ correctly evaluated A1

2 (a energy supplied / work done (per unit charge) toB1
drive charge round a (complete) circuit B1ORp.d. / voltage across battery / power sourB1
(b) (i) $P=I V$ OR $(I=) P / V$ OR $(I=) 60 / 240$ C1
$=0.25$ A OR $1 / 4 \mathrm{~A}$ A1
(ii) $I=V / R$ OR other version $\mathrm{OR}(R=) V / I$ C1
OR ($R=$) 240/0.25
OR $P=V^{2} / R$ or other version e.g. $(R=) V^{2} / P$OR ($R=$) $240^{2} / 60$$R=960 \Omega$A1
(c) current in series circuit $=240 / 972=0.247 \mathrm{~A}$ B1
current suits both bulbs, (so both light up so Y is correct) B1
ORp.d. across bulb $A=240 \times(960 / 972)=237$p.d. across bulb $B=240 \times 12 / 972=2.96$B1
p.d. suits both bulbs, (so both light up so Y correc B1

www.igexams.com

3
(a (i) 1. resistance is constant / doesn't vary
2. resistance increases B1
(ii) 7 V
(b) resistance of resistor $=4 / 2.6(=1.54 \Omega)$
resistance of lamp $=4 / 3.6(=1.11 \Omega)$ C
$1 / R=1 / R_{1}+1 / R_{2} \quad O R \quad(R=) R_{1} R_{2} /\left(R_{1}+R_{2}\right) \quad$ OR either eq. with numbers $\quad \mathrm{C} 1$ 0.645 or 0.65Ω

OR
current through resistor $=2.6 \mathrm{~A}$
current through lamp $=3.6 \mathrm{~A}$
total current $=2.6+3.6=6.2 \mathrm{~A}$
0.645Ω OR 0.65Ω OR $R=4 /$ sum of candidate's currents

4 (a) (i) 4Ω

(ii) IVt OR $I^{2} R t \quad O R \quad V^{2} t / R \quad$ in any form or words or numbers Condone $t=9$ if substituted possible ecf from (i)
accept R value based on no. of sig. figs. for resistors used by candidate
(b) $R=\rho L / A$ OR $R \propto L / A O R R \propto L$ and $R \propto 1 / A$ or $1 / d^{2}$ or $1 / r^{2}$
$A_{2}=1 / 4 \mathrm{~A}_{1}$ OR $\mathrm{A}_{2}=0.25 \mathrm{~A}_{1}$
$\mathrm{R}_{2}=(0.45 / 0.3) \times \mathrm{R}_{1} \mathrm{OR}(3 / 2) \times \mathrm{R}_{1}$ C1
$3 / 8$ OR 0.375 OR 37.5% A1
OR
$R=\rho L / A O R R \propto L / A O R R \propto L$ and $R \propto 1 / A$ or $1 / d^{2}$ or $1 / r^{2}$
Resistance of thinner wire with same length as thicker wire $=4 \times 4=16 \Omega$
Actual resistance of thinner wire $=1.8 / 0.3=6.0 \Omega$
Ratio: L of thinner wire $/ L$ of thicker wire $=6.0 / 16=3 / 8=0.375=37.5 \%$

www.igexams.com

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/
$\begin{array}{cccc}5 & \text { (a } \begin{array}{ll}\text { same/like/similar charges repel } \\ \text { unlike/opposite/different charges attract }\end{array} & \begin{array}{l}\text { (ignore poles repel) } \\ \text { (ignore poles attract) }\end{array} & \text { B1 } \\ & \text { B1 }\end{array}$
(b) idea of car/person (being) charged (by friction) B1 idea of charge/electrons going to/from/through person B1
(c) (i) electrons / -ve charges move towards the rod / to R (ignore just "attracted") ignore any mention of +ve charges moving any mention of +ve electrons gets B0
(ii) opposite charges attract OR electrons / -ve charges attracted to +ve / rod B1
attraction between opposite charges > repulsion between like charges OR - ve charges (are) close(r) (to the rod)

B1
(iii) electrons / -ve charges flow (up) from earth/wire no e.c.f. from (i) ignore +ve charges moving, NOT +ve electrons B1 ball becomes -vely charged B1

