Electrical Quantities

Question Paper 5

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic Sub-Topic	Electrical quantities
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 5

Time Allowed: 56 minutes

Score: /47

Percentage: /100

1

(a)	Th	e following are three statements about boiling.
	•	A liquid boils at a fixed temperature.
	•	During boiling, vapour can form at any point within the liquid.
	•	Without a supply of thermal energy, boiling stops.
	Cor	mplete the following equivalent statements about evaporation.
	•	A liquid evaporates at
	•	Du ing evaporation
	•	Without a supply of thermal energy, evaporation[3]
(b)	20 r	an containing water boiling at 100° C is standing on an electrically heated hot-plate. In minutes, 0.075 kg of water is lost as steam. The specific latent heat of vaporisation of er is 2.25×10^{6} J/kg.
	(i)	Calculate the energy used in converting 0.075 kg of boiling water to steam.
		energy =[2]
	(ii)	The hot-plate operates at 240 V, 0.65 A.
		Calculate the energy supplied to the hot-plate in 20 minutes.
		energy =[2]
	(iii)	Suggest why the answers to (b)(i) and (b)(ii) are not the same.
		[1]

[Total: 8]

2 In Fig. 9.1, A and B are two conductors on insulating stands. Both A and B were initially uncharged.

Fig. 9.1

- (a) Conductor A is given the positive charge shown on Fig. 9.1.
 - (i) On Fig. 9.1, mark the signs of the charges induced at end X and at end Y of conductor B. [1]

(ii)	Explain how these charges are induced.
	[3]
(iii)	Explain why the charges at X and at Y are equal in magnitude.
	[A]

(b)	B is	now connected to earth by a length of wire.
	Ехр	lain what happens, if anything, to
	(i)	the charge at X,
		[1]
	(ii)	the charge at Y.
		[2]
		[Total: 8]

3

	e evening, a caretaker forgets to switch off the 100W til he returns at 7.30 a.m. (07:30) the next morning.
The mains electricity supply is 250 V.	
(a) Calculate how much energy the caretake	er has wasted.
energ	gy wasted = [2]
(b) Calculate the charge that passed through	n the lamp during this time.
	charge =[3]
(a) What have and to the analysis wasted by	
(c) What happened to the energy wasted by	
	[1] [Total: 6]
	[Total. 0]

4 Fig. 7.1 shows how the resistance of the filament of a lamp changes as the current through the lamp changes.

Fig. 7.1

(a)	Describe how the resistance of the lamp changes.

b)	For	a current of 0.070 A, find	
-	(i)	the resistance of the lamp, resistance =	[1]
	(ii)	the potential difference across the lamp,	
	(iii)	potential difference =	[2]
		power =	[2]
c)	Two	of these lamps are connected in parallel to a cell. The current in each lamp is 0.070 A.	-
	(i)	State the value of the e.m.f. of the cell. e.m.f. =	[1]
	(ii)	Calculate the resistance of the circuit, assuming the cell has no resistance.	
		resistance =	[2]
		[Total:	10]

5 (a) Fig. 10.1 shows a positively charged plastic rod, a metal plate resting on an insulator, and a lead connected to earth.

6 Fig. 8.1 shows a high-voltage supply connected across two metal plates.

Fig. 8.1

When the supply is switched on, an electric field is present between the plates.

(a)	Explain what is meant by an <i>electric field</i> .
	[2]

- **(b)** On Fig. 8.1, draw the electric field lines between the plates and indicate their direction by arrows. [2]
- (c) The metal plates are now joined by a high-resistance wire. A charge of 0.060 C passes along the wire in 30 s.

 Calculate the reading on the ammeter.

(d) The potential difference of the supply is re-set to 1500 V and the ammeter reading changes to 0.0080 A. Calculate the energy supplied in 10 s. Show your working.

energy =[3]

[Total : 9]