www.igexams.com

Electrical Quantities
 Mark Scheme 8

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic	Electrical quantities
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 8

Time Allowed:
Score:
Percentage:
/100

www.igexams.com

1
(a Example: e.g. battery: (chemical to) electrical
engine: (chemical to) kinetic / mechanical fire: (chemical to) thermal / heat
(human) body: (chemical to) heat / kinetic
(b) (i) ($P=$) IV OR in words OR 0.27×17 $=4.59 \mathrm{~W}$ at least 2 s.f.
(ii) (K.E. =) efficiency \times input OR 0.35×4.59
$=1.61 \mathrm{~J}$ or Nm at least $2 \mathrm{~s} . \mathrm{f}$.
(iii) 1. $d=m / V O R(m=) V \times d$ OR in words $\mathrm{OR} 0.00014 \times 1000$ $=0.14 \mathrm{~kg}$
2. P.E. gained $=K$.E. lost $O R m g h=1 / 2 m v^{2}$

OR $0.14 \times 10 \times h=1.61$ OR 1.6
$h=1.15 \mathrm{~m}$ OR 1.14 m at least 2 s.f.
OR
$1 / 2 m v^{2}=1.61 \mathrm{OR}$
$v^{2}=2 \times 1.61 / 0.14=23$ OR $\quad v^{2}=2 \times 1.6 / 0.14=22.86$ $(h=) v^{2} / 2 g=23 / 20=1.15 \mathrm{~m}$ OR $(h=) 22.86 / 20=1.14 \mathrm{~m}$
[Total: 9]
(a (i) total $R=320(\Omega)$ or V per lamp $=6(\mathrm{~V})$
$I=(240 / 320$ or $6 / 8=) 0.75 \mathrm{~A}$ ecf from previous line
A1 [2]
(ii) use of $P=V I$ OR $I^{2} R$ OR $V^{2} / R \quad \mathrm{C} 1$
4.5 W ecf from (a)(i)
(b) resistance of each lamp $=8 \times 1.05=8.4(\Omega)$
total $R=240 / 0.9=266.7(\Omega)$ OR V per lamp $=8.4 \times 0.9=7.56(\mathrm{~V})$
B1 no. of lamps $(=266.7 / 8.4)=31.7$ OR $(=240 / 7.56)=31.7$

B1
max. no. of failed lamps $=8$
B1 accept reverse logic

www.igexams.com

(a any three from:
use a strong(er) magnet increase the number of coils in the solenoid / turns of solenoid closer together move the magnet fast(er). place iron core in the solenoid use thick(er) wire / low(er) resistance wire for solenoid
$\max B 3$
(b) (i) $N_{\mathrm{P}} / N_{\mathrm{S}}=V_{\mathrm{P}} / V_{\mathrm{S}}$ OR 200/800 $=V_{\mathrm{P}} / 24$ OR $\quad V_{\mathrm{P}}=N_{\mathrm{P}} V_{\mathrm{S}} / N_{\mathrm{S}}$ OR $\quad V_{P}=200 \times 24 / 800$ 6.0 V A1
(ii) $I_{\mathrm{p}} V_{\mathrm{p}}=I_{\mathrm{s}} V_{\mathrm{s}} \quad$ OR $\quad I_{\mathrm{p}} N_{\mathrm{p}}=I_{\mathrm{s}} N_{\mathrm{s}} \quad$ OR $\quad I_{\mathrm{P}}=I_{\mathrm{S}} V_{\mathrm{S}} / V_{\mathrm{P}} \quad$ OR $\quad I_{\mathrm{P}}=I_{\mathrm{S}} N_{\mathrm{S}} / N_{\mathrm{P}}$ OR $\quad I_{\mathrm{P}}=(0.5 \times 24) / 6 \quad$ OR $\quad I_{\mathrm{P}}=(0.5 \times 800) / 200$ 2(.0) A allow ecf from (b)(i)

4 (a) (i) $0(A) /$ zero Unit penalty if wrong unit B1
(ii) 12 V
(b) (i) V / R OR $V=I R$ in any form, letters, words or numbers C 1 0.5 A A1
(ii) $8 \times$ candidate's (i) OR $8 / 24 \times 12$ C1

4 V OR 4.0 V e.c.f.
(c) $1 / R_{1}+1 / R_{2}=1 / R \quad$ OR $\quad R=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ in any form B1
$5.3(\Omega)$ OR $51 / 3(\Omega)$ OR $16 / 3(\Omega)$ C
12 / candidate's R C1
2.25 A c.a.o. A1

Alternatively: $12 / 16(=0.75)$ OR $12 / 8(=1.5)$
C1
12/16 (= 0.75) AND 12/8 (= 1.5)
C1
Currents added C1
2.25A c.a.o.

www.igexams.com

(a) all 4 lights in parallel with supply and none in seriesB1master switch in a place where it will work (cannot score if no supply or if shortcircuit)B1
one switch for 2 lights in living room AND one for bathroom
AND one for bedroom
(b) (i) $\mathrm{W}=\mathrm{V} \times \mathrm{I}$ or $100=200 \times \mathrm{I}$ in any form C10.5 A or 0.5 aA1
(ii) $\mathrm{I} \times \mathrm{t}$ or 0.5×60 e.c.f. C1
30 C or 30 c e.c.f. A1
(c) (i) 135 W B1
(ii) any power \times any time (words or symbols or numbers) C1NOTE: $280(\mathrm{~W})$ is the total power of lamps in house, so counts as "power"486000 J or 486 kJ or 0.135 kWh accept lower case unitsA1NOTE: $45 \times 3600=162000 \mathrm{~J}$ gets e.c.f. from (i)

6 (a) changes a.c. to d.c. OR rectifies a/c OR allows current to flow one way only OR prevents current flowing backward
(b) $\mathrm{I} \times \mathrm{t}$ or 2×12 or $2 \times 12 \times 60 \times 60$ or amps \times seconds 24 Ah or 86400 C or 86000 C
(c) emf = J/C OR energy converted/work done per unit charge/coulomb OR W/A OR volts/p.d. when no current in circuit
12 J of energy are delivered/needed for every coulomb of charge OR 12 W is the power to drive a current of 1 A
(d) (i) series connection shown, any recognisable symbols
(ii) total power $=16 \mathrm{~W}$ OR 8/6
1.33 A accept fraction c.a.o. A1
(iii) any power \times any time or $16 \times 60 \times 60$ or IVt or $8 \times 60 \times 60 \quad$ C1

57600 J or 0.016 kWh or 28800 J or 0.008 kWh

www.igexams.com

7
(a switch in correct position
(b) (i) rheostat/variable resistance symbol drawn B1
(ii) dot and R in line to 12 W lamp $\quad \mathrm{B} 1$
(c) Question deleted
(d) $\mathrm{R}=\mathrm{V} / \mathrm{I}$ or $12 / .3$

C1
$=4 \Omega$
A1
(e) (i) parallel circuit/all lamps connected separately across the 12V B1
(ii) 4 A

