www.igexams.com

Electrical Quantities

Question Paper 8

Level	IGCSE
Subject	Physics
ExamBoard	CIE
Topic	Electricity and Magnetism
Sub-Topic	Electrical quantities
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 8

Time Allowed:
Score:
Percentage:
/100

www.igexams.com

1 (a) State an example of the conversion of chemical energy to another form of energy. example \qquad energy conversion
(b) The electrical output of a solar panel powers a pump. The pump operates a water fountain. The output of the solar panel is 17 V and the current supplied to the pump is 0.27 A .
(i) Calculate the electrical power generated by the solar panel.
power =
(ii) The pump converts electrical energy to kinetic energy of water with an efficiency of 35%.

Calculate the kinetic energy of the water delivered by the pump in 1 second.
kinetic energy =
(iii) The pump propels $0.00014 \mathrm{~m}^{3}$ of water per second. This water rises vertically as a jet. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Calculate

1. the mass of water propelled by the pump in 1 second,
mass =

www.igexams.com

2. the maximum height of the jet of water.
maximum height $=$
[Total: 9]

www.igexams.com

240 lamps, each of resistance $8 . \Omega$, are connected in series to a 240 V supply in order to decorate a tree.
(a) Calculate
(i) the current in each lamp,
current =
(ii) the power dissipated in each lamp.
power =
(b) The lamps are designed to "fail-short". If a filament fails, the lamp shorts so that it has no resistance. The other lamps continue to light and the current increases.

The lamps are connected through a fuse that blows when the current rises above 0.9A. At this current, the resistance of each lamp is 5% greater than its normal working resistance.

Calculate the maximum number of lamps that can fail before the fuse blows.

www.igexams.com

3 (a) In Fig. 8.1, a magnet is moving towards one end of a solenoid connected to a sensitive centrezero meter. During this movement a current is induced in the solenoid.

Fig. 8.1
Suggest three possible changes to the system in Fig. 8.1 that would increase the induced current.

1. \qquad
2. \qquad
3.

(b) Fig. 8.2 shows a transformer. P is the primary coil. S is the secondary coil. The coils are wound on an iron core.

Fig. 8.2
P has 200 turns and S has 800 turns. The e.m.f. induced across S is 24 V . The current in S is 0.50 A. The transformer operates with 100% efficiency.

www.igexams.com

Calculate

(i) the voltage of the supply to P ,
voltage $=$
(ii) the current in P .

www.igexams.com

4 The circuit shown in Fig. 10.1 uses a 12V battery.

Fig. 10.1
(a) Switch S is open, as shown in Fig. 10.1.

State the value of
(i) the reading on the ammeter,
reading =
(ii) the potential difference (p.d.) across S .
p.d. =
(b) Switch S is now closed.
(i) Calculate the current in the ammeter.
current =
(ii) Calculate the p.d. across the 8Ω resistor.
p.d. =

www.igexams.com

(c) The two resistors are now connected in parallel.

Calculate the new reading on the ammeter when S is closed, stating clearly any equations that you use.

$$
\text { reading }=
$$

www.igexams.com

1 Fig. 8.1 is the plan of a small apartment that has four lamps as shown.

Fig. 8.1
Power for the lamps is supplied at 200 V a.c. and the lamps are all in parallel.
(a) In the space below, draw a lighting circuit diagram so that there is one switch for each room and one master switch that will turn off all the lamps. Label the lamps as 60 W or 100W.
(b) The 100 W lamp is switched on. Calculate
(i) the current in the lamp,

www.igexams.com

(ii) the charge passing through the lamp in one minute.
charge =
(c) The three 60W lamps are replaced by three energy-saving ones, that give the same light output but are rated at only 15 W each.

Calculate
(i) the total reduction in power,
reduction in power $=$
(ii) the energy saved when the lamps are lit for one hour.

www.igexams.com

2 Fig. 8.1 shows a car battery being charged from a 200 V a.c. mains supply.

Fig. 8.1
(a) State the function of the diode.
\qquad
\qquad
(b) The average charging current is 2.0 A and the battery takes 12 hours to charge fully. Calculate the charge that the battery stores when fully charged.
(c) The battery has an electromotive force (e.m.f.) of 12 V and, when connected to a circuit, supplies energy to the circuit components.

State what is meant by an electromotive force of 12 V .
\qquad
\qquad
\qquad

www.igexams.com

(d) (i) In the space below, draw a circuit diagram to show how two 6.0V lamps should be connected to a 12 V battery so that both lamps glow with normal brightness.
(ii) The power of each lamp is 8.0 W . Calculate the current in the circuit.
current =
(iii) Calculate the energy used by the two lamps when both are lit for one hour.
energy = .

www.igexams.com

3 Fig. 8.1 shows a low-voltage lighting circuit.

Fig. 8.1
(a) On Fig. 8.1, indicate with a dot and the letter S, a point in the circuit where a switch could be placed that would turn off lamps Y and Z at the same time but would leave lamp X still lit.
(b) (i) In the space below, draw the circuit symbol for a component that would vary the brightness of lamp X .
(ii) On Fig. 8.1, mark with a dot and the letter R where this component should be placed.
(c) Calculate the current in lamp Y .

www.igexams.com

(d) The current in lamp Z is 3.0 A . Calculate the resistance of this lamp.
resistance =
(e) The lamp Y is removed.
(i) Why do lamps X and Z still work normally?
(ii) The current in lamp X is 1.0 A . Calculate the current supplied by the battery with lamp Y removed.
current =
[2]

