www.igexams.com

Density
 Mark Scheme 1

Level	IGCSE
Subject	Physics
Exam Board	CIE
Topic	General Physics
Sub-Topic	Density
Paper Type	Alternative to Practical
Booklet	Mark Scheme 1

Time Allowed:	44 minutes
Score:	$/ 36$
Percentage:	$/ 100$

www.igexams.com

$1 \quad$ (a (i) $\quad l=14.7$ AND $d=2.5$
(ii) boiling tube between blocks and ruler spanning gap
suitable precaution e.g.
measure in (at least) 2 places and take average, avoid lip, ensure blocks smooth, no dirt between tube and block
(iii) $\quad V_{1}=72$
(b) (i) $V_{2}=54$
(ii) line of sight perpendicular to reading/ read from bottom of meniscus
(iii) V_{3} correctly calculated
(c) (i) $\rho=1.7$ to 1.8
unit $\mathrm{g} / \mathrm{cm}^{3}$
(ii) $m=32(\mathrm{~g})$
(d) suitable source of inaccuracy
e.

- any reference to why tube is not a cylinder,
- tube may contain some water when mass taken,
- difficult to fill to brim and then pour out
appropriate effect on value of ρ explained

www.igexams.com

2
(a)(i)(ii) $m_{1}=40.68(\mathrm{~g})$ and $m_{2}=113.60(\mathrm{~g})$ correct answer only (not 40:68, 113:60)
(iii) $\quad V_{1}=72\left(\mathrm{~cm}^{3}\right)$ correct answer only
(iv) ρ_{1} with unit of $\mathrm{g} / \mathrm{cm}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$ seen in (a), (b) or (c) and not contradicted (unit must match value)
(b)(i)(ii) $m_{3}=15.47(\mathrm{~g})$ and $V_{2}=88\left(\mathrm{~cm}^{3}\right)$ correct answer only
[1]
(iii) $V_{3}=16\left(\mathrm{~cm}^{3}\right) /$ ecf
(iv) ρ_{2} to $2 / 3$ sig. figs.
(c) $\rho_{\mathrm{AV}} 0.99(1)\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ or $991 / 990\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ or ecf from (a) and (b)
(d) any one from:

- take reading perpendicularly/at right angles to scale
- read bottom of meniscus
- other suitable precaution
(e) appropriate source of inaccuracy, other than in (d)
e.g. balance not at zero/test-tube catches on side of measuring cylinder
matching effect on ρ with explanation
e.g. ρ greater as mass reading larger/ ρ greater as volume smaller

www.igexams.com

3 (a
(i) $h=2.5, w=2.7$, and $d=2.7$
(ii) $\quad V_{\mathrm{A}}=18.225\left(\mathrm{~cm}^{3}\right)$ to 2 or more sig. figs. ecf (i)
(iii) density $=3.22 \mathrm{~g} / \mathrm{cm}^{3}$ to 2 or 3 sig. figs. ecf (ii) unit needed, penalise additional sig. figs.
(b) diagram showing blocks and rule correctly used - blocks touching the sphere, and rule spanning gap and touching blocks
(c) $\quad V_{1}=66\left(\mathrm{~cm}^{3}\right)$
(ii) line of sight at right angles to measuring cylinder
(d) $V_{B}=18\left(\mathrm{~cm}^{3}\right)$ ecf from candidate's V_{1}
(e) any two from:
measuring cylinder not sensitive owtte
some clay left on fingers
cube not perfectly shaped/difficult to measure owtte
air bubbles clinging to modelling clay/within the modelling clay volume of string
difficult to judge the bottom of the meniscus/bubble on meniscus
ignore parallax
do not credit poor experimental practice e.g. spills or splashes

4 (a $\quad V_{1}=66\left(\mathrm{~cm}^{3}\right)$
$V_{2}=83\left(\mathrm{~cm}^{3}\right)$
(b) density $=6.7$ or 6.71 / allow e.c.f. unit $\mathrm{g} / \mathrm{cm}^{3}$
(c) suitable cause:
e.g. object not dried before measuring ma
mass measured after immersion
measuring cylinder not read at eye-level / parallax explained
measuring cylinder not read at meniscus (o.w.t.t.e.)
zero reading on balance not allowed for

