Thermal Properties and Temperature

Question Paper 1

Level	IGCSE
Subject	Physics
Exam Board	CIE
Topic	Thermal Physics
Sub-Topic	Thermal Properties and Temperature
Paper Type	Alternative to Practical
Booklet	Question Paper 1

Time Allowed: 60 minutes

Score: /50

Percentage: /100

1 A student is investigating the effect of insulation on the rate of cooling of hot water in a 250 cm³ container.

The student can choose from the following apparatus:

thermometer
250 cm³ glass beaker
250 cm³ plastic beaker
250 cm³ copper can
250 cm³ measuring cylinder
three different insulating materials
clamp, boss and stand
stopwatch.

Plan an experiment to investigate the effectiveness of the three insulating materials.

You should

- explain briefly how you would carry out the investigation,
- state the key variables that you would control,
- draw a table, or tables, with column headings, to show how you would display your readings.
 You are not required to enter any readings in the table,
- explain how you would use your readings to reach a conclusion.

A diagram is not required but you may draw a diagram if it helps your explanation.

[7]

2 A student is investigating the cooling of water.

Some of the apparatus is shown in Fig. 5.1.

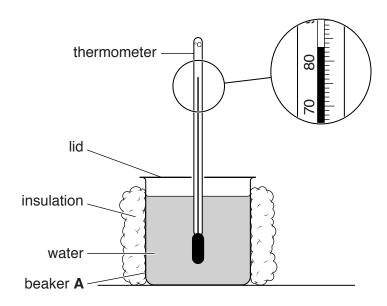


Fig. 5.1

(a) The student pours 200 cm³ of hot water into a 250 cm³ insulated beaker labelled **A**. He covers the top of the beaker with a lid.

The student takes a temperature reading every 30s as the water cools. The readings are shown in Table 5.1.

(i) Complete the column headings in the table. [1]

[1]

(ii) The starting temperature θ of the hot water in beaker **A** is shown on Fig. 5.1.

Record this temperature in the table at time t = 0 s.

Table 5.1

	beaker A insulation and lid	beaker B insulation, no lid	beaker C lid, no insulation
t/			
0		85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

(b)	The student repeats the procedure using a 250 cm ³ beaker labelled B . This beaker is insulabut has no lid.		
	He repeats the procedure again using a $250\mathrm{cm^3}$ beaker labelled \mathbf{C} . This beaker has a lid but no insulation.		
	All the readings are shown in Table 5.1.		
	(i) Tick the statement that best describes the results of the investigation.		
	Removing the lid speeds up the rate of cooling significantly more than removing the insulation.		
	Removing the insulation speeds up the rate of cooling significantly more than removing the lid.		
	There is no significant difference between removing the lid and removing the insulation.		
	(ii) Justify your answer by reference to the readings.		
	[1]		
(c)	State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair.		
	1		
	2		
	[2]		
(d)	Suggest a suitable material for the lid. Give a reason for your choice of material.		
	material		
	reason		
	[2]		

(e)	Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.
	[2]
	[Total: 10]

- 3 The class is investigating the cooling of water.
 - (a) A student pours 100 cm³ of hot water into a beaker. He places a thermometer in the water. Fig. 2.1 shows the thermometer.

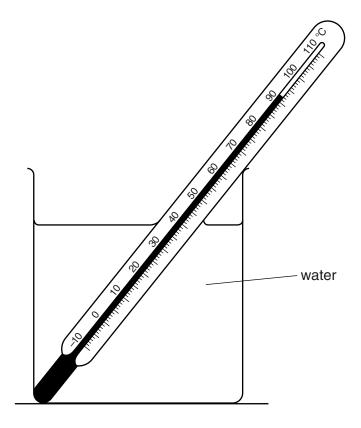


Fig. 2.1

(i) Record the temperature $\theta_{\rm H}$ of the hot water as shown on the thermometer in Fig. 2.1.

$$\theta_{\mathsf{H}} =$$
[1]

(ii) State one precaution that you would take to ensure that the temperature reading for the hot water is as reliable as possible.

.....[1]

(b) The student adds $50\,\mathrm{cm^3}$ of cold water to the hot water. He records the temperature θ_1 .

$$\theta_1 = \frac{71 \,^{\circ}\text{C}}{}$$

Calculate the decrease in temperature θ_A using the equation $\theta_A = (\theta_H - \theta_1)$.

$$\theta_{A}$$
 =[1]

(c)	The student adds a further $100\mathrm{cm^3}$ of cold water to the water in the beaker. He records the temperature θ_2 .		
	$\theta_2 = \dots 57^{\circ}\text{C}$		
	Calculate the decrease in temperature $\theta_{\rm B}$ using the equation $\theta_{\rm B}$ = $(\theta_1 - \theta_2)$.		
	θ_{B} =[1]		
(d)	Suggest two factors, other than the volume and temperature of the cold water added, that affect the decrease in temperature of the hot water.		
	1		
	2		
	[2]		
(e)	Describe briefly how a measuring cylinder is read to obtain an accurate value for the volume of water. You may draw a diagram.		
	[2]		

4 Two students are investigating thermal energy transfer.

They are using the apparatus shown in Fig. 5.1.

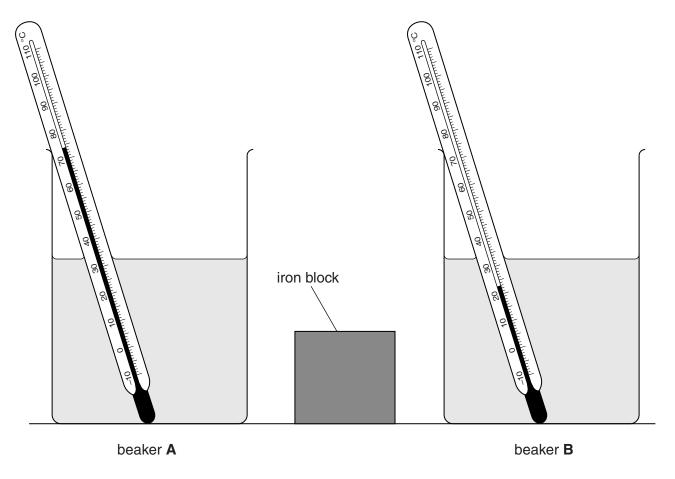


Fig. 5.1

Beaker **A** contains hot water and beaker **B** contains cold water at room temperature.

(a) Record the temperature $\theta_{\rm H}$ of the hot water and the temperature $\theta_{\rm C}$ of the cold water as shown on the thermometers in Fig. 5.1.

$$\theta_{\rm H} = \dots \\ \theta_{\rm C} = \dots \\ [1]$$

(b) Using metal tongs, one of the students places the iron block in the hot water in beaker **A** for 30 seconds.

He then removes the block and places it in the cold water in beaker **B**.

The other student then measures the temperature of the water in beaker **B** and finds that it has risen to 35 °C. Their teacher suggests that this value is lower than expected.

The students suggest that, immediately before the iron block was put into the cold water, the temperature of the iron block was not the same as $\theta_{\rm H}$.
Suggest one reason for this and a possible improvement to the experiment which could make the temperature of the block nearer to $\theta_{\rm H}$.
reason
improvement
[2]
The students also think that, when the block cooled in the water, not all of the thermal energy lost by the block raised the temperature of the water.
Suggest one reason for this and a possible improvement to the experiment which would reduce thermal losses.
reason
improvement
[2]
[Total: 5]

5 The class is investigating the cooling of water.

Fig. 4.1 shows the apparatus used.

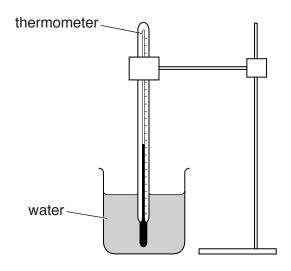


Fig. 4.1

(a) Record the temperature $\theta_{\rm C}$ of the cold water shown on the thermometer in Fig. 4.2.

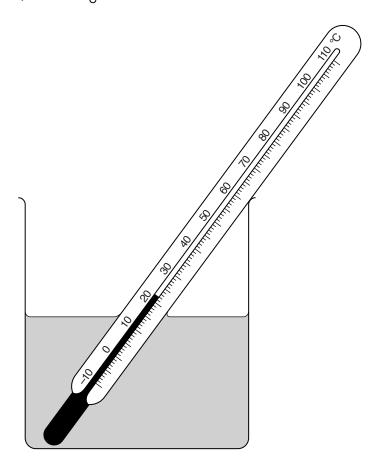


Fig. 4.2

 $\theta_{\mathbb{C}}$ =[1]

(b)	A student pours $100\mathrm{cm^3}$ of hot water into a beaker. He records the temperature θ_H of the lawter in the beaker.		
	$\theta_{H} = 83^{\circ}C$		
	State one precaution that you would take to ensure that the temperature reading is as reliable as possible.		
(c)	The student adds 100 cm 3 of cold water to the hot water in the beaker. He records the temperature $\theta_{\rm M}$ of the mixture.		
	$\theta_{\rm M} = $ 46 °C		
	Calculate the average temperature $\theta_{\rm A}$ of the hot water and the cold water using the equation $\theta_{\rm A} = \frac{(\theta_{\rm H} + \theta_{\rm C})}{2}$.		
	$\theta_{A} =$ [1]		
(d)	The student carried out this experiment carefully.		
	He was expecting that the temperature $\theta_{\rm M}$ of the mixture would be the same as the average temperature $\theta_{\rm A}$ of the hot water and the cold water.		
	Suggest two factors that could cause $\theta_{\rm M}$ and $\theta_{\rm A}$ to be different.		
	1		
	2		
	[2]		

(e) Fig. 4.3 shows a measuring cylinder.

Three students take the volume reading. Their readings are:

- Student 1: 80 cm³
- Student 2: 79 cm³
- Student 3: 78 cm³

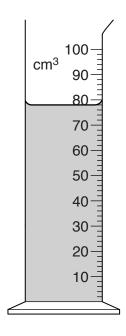
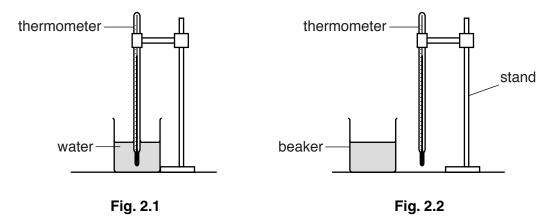


Fig. 4.3

(i) State the correct reading.

and a contract of the contract	
correct reading =	
COLLECT LEGALING —	

(ii) Explain briefly the mistake made by **one** of the other students.


Student	. is incorrect, because	e	

[Total: 7]

[2]

6 The class is investigating the cooling of a thermometer bulb.

Figs. 2.1 and 2.2 show the apparatus.

(a) In the space in Table 2.1, record the temperature θ_1 of the hot water as shown on the thermometer in Fig. 2.3.

Fig. 2.3

(b) A student removes the thermometer from the beaker of hot water, as shown in Fig. 2.2. She immediately starts a stopclock, and records the temperature θ_1 every 10s for 1 minute. The temperature readings are shown in Table 2.1.

Table 2.1

t/	θ_1 /	θ_2 /
0		33
	72	30
	65	28
	59	27
	53	26
	48	26
	43	25

She then adds $100\,\mathrm{cm}^3$ of cold water to the water in the beaker and repeats the procedure. She records the temperature readings in the θ_2 column of the table.

(i)	Complete t	he column	headings	in	the ta	able.
١	•,	Complete	no oolaniin	noadingo			abio.

((ii)	Record	the time	readings	in th	ne table
۱		, itecoia	uie uiie	readirids	III U	ie labie.

[2]

[2]

(c) (i) Using the readings in the θ_1 column of the table, calculate the decrease in temperature $\Delta\theta_1$ in 60 s.

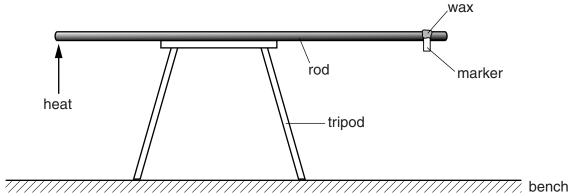
 $\Delta\theta_1$ =

(ii) Using the readings in the θ_2 column of the table, calculate the decrease in temperature $\Delta\theta_2$ in 60 s.

 $\Delta\theta_2$ =

(iii) State the reason why $\Delta\theta_2$ is less than $\Delta\theta_1$.

.....


(d) State a precaution that you would take when reading the thermometer scale in order to obtain reliable readings.

.....[1]

(e)	Suggest one reason why other students, carrying out this experiment with care, might obtain values of $\Delta\theta_1$ and $\Delta\theta_2$ different from the values in part (c) .
	[1]
	[Total: 7

7 A student carries out an experiment to compare how quickly thermal energy is conducted along rods made from different metals. Each rod is heated at one end with a Bunsen burner flame.

Each rod carries a marker held on the rod with a little wax. When the wax melts, the marker falls.

7	//////////////////////////////////////
	Fig. 2.1
(a)	One other piece of equipment is required to compare how quickly thermal energy is conducted. Name this piece of equipment.
	[1]
(b)	Suggest three possible variables that the student should keep constant in order to make a fair comparison between the different metals.
	1
	2
	3
	[3]
(c)	Another student suggests that it would be helpful to measure the temperatures at both ends of the rod. He suggests using a liquid-in-glass thermometer, normally used for measuring the temperature of hot water.
	Suggest two reasons why a liquid-in-glass thermometer is not suitable.
	1
	2
	[2]

[Total: 6]