Thermal Properties and Temperature Mark Scheme 1

Level	IGCSE
Subject	Physics
Exam Board	CIE
Topic	Thermal Physics
Sub-Topic	Thermal Properties and Temperature
Paper Type	Alternative to Practical
Booklet	Mark Scheme 1

Time Allowed:	$\mathbf{6 0}$ minutes
Score:	$/ 50$
Percentage:	$/ 100$

www.igexams.com

Question		Answer	Marks
1	MP1	Uses same container throughout	1
	MP2	Hot water in container (any) and takes temperatures at intervals or at start and after a fixed time OR Hot water in container (any) and takes time for a fixed temperature fall.	1
	MP3	Repeats with different insulators (all three used)	1
		Any two from:	
		Constant room temperature	
		Same starting temperatures (clearly stated)	
		Same volumes of hot water (clearly stated) Same thickness/amount of insulator	2
		Use container without insulation	
		Use of a lid	
		Insulates bottom of container Uses the copper can only	
	MP6	Table or tables as appropriate to method: Temperatures with unit ${ }^{\circ} \mathrm{C}$ and time with units (or min) and different insulators shown	1
	MP7	Use of readings: graph of temperature against time	1
	$\begin{aligned} & \text { OR } \\ & =\mathrm{be} \end{aligned}$	pare results and comment that longest time to cool = best insulator or smallest drop in temperature in fixed time insulator (or reverse arguments)	
			Total 7

www.igexams.com

Question	Answer	Marks
2(a)(i)	s, ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$	1
2(a)(ii)		1
2(b)(i)	box/sentence indicated	1
2(b)(ii)	Clear reference to readings with examples of temperature differences	1
2(c)	Any two from: - Room temperature (or suitable reference to draughts or similar) - Starting temperature (of water) - Density of packing/amount/type of insulation - Thickness of lids/identical lids	max 2
2(d)	Card or any suitable insulating material Should be a good insulator/poor conductor	1
2(e)	Perpendicu viewing/view at right angles/eye level Reading to bottom of meniscus	1
		Total: 10

www.igexams.com

3 (a (i) $\theta_{\mathrm{H}}=92\left({ }^{\circ} \mathrm{C}\right)$
(ii) any one from:

- wait for thermometer reading to stop rising
- perpendicular viewing of scale
- stirring
- thermometer bulb in middle of water/not touching beaker
(b) $\theta_{\mathrm{A}}=21\left({ }^{\circ} \mathrm{C}\right)$ allow ecf from (i)
(c) $\theta_{\mathrm{B}}=14$, correct unit seen, ${ }^{\circ} \mathrm{C}$ or deg C NOT C° or ${ }^{\circ} \mathrm{C}$, and not contradicted
(d) any two from:
- room temperature/other environmental statement
- initial hot water temperature
- heat loss to surroundings /evaporation/conduction through sides of beaker
- time delays in adding water
(e) perpendicular viewing/eye level with meniscus
reading to bottom of meniscus

www.igexams.com

$4 \quad$ (a $\quad \theta_{\mathrm{H}}=74$ AND $\theta_{\mathrm{C}}=23\left({ }^{\circ} \mathrm{C}\right)$

(b) (i) suitable reason, e.g.

- temperature not able to reach max θ_{H} (in 30s)
- temperature dropped on transfer
- conduction/transfer to metal tongs
matching improvement, e.g.
- leave block in hot water longer
- transfer more quickly
- use insulated tongs/cotton round block
(ii) suitable reason, e.g.
- some (thermal) energy transferred to beaker,
- some (thermal) energy transferred to surroundings,
- evaporation/convection (into atmosphere)
matching improvement, e.g.
- use a less conducting material for beaker/owtte
- insulate beaker
- allow for beaker in any calculation
- lid on beaker

www.igexams.com

5 (a $\quad \theta_{\mathrm{C}}=22^{\circ} \mathrm{C}$
(b) view thermometer at right angles OR stirring OR wait for reading to stop rising OR thermometer (bulb) not touching sides/bottom of beaker owtte
(c) $\theta_{\mathrm{A}}=52.5\left({ }^{\circ} \mathrm{C}\right) \mathrm{OR}$ e.c.f.
(d) any two from:

- heat loss to surroundings/beaker OR heat loss/drop in temperature by evaporation
- delays in taking readings
- reference to uncertainty in volume measurements
(e) (i) $78\left(\mathrm{~cm}^{3}\right)$
(ii) EITHER:

Student 1 (80) - read to top of meniscus OR scale not read at right angles OR Student $2(79)$ - divisions are every $2\left(\mathrm{~cm}^{3}\right)$ not $1\left(\mathrm{~cm}^{3}\right)$
OR Student 2 (79) - scale not read at right angles
(a $\quad \theta_{1}=82\left({ }^{\circ} \mathrm{C}\right)$
(b) $\mathrm{s},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$
(ii) $10,20,30,40,50,60$ [1]
(c)(i)(ii) $\Delta \theta_{1}=39\left({ }^{\circ} \mathrm{C}\right)$ AND $\Delta \theta_{2}=8\left({ }^{\circ} \mathrm{C}\right) \quad$ [1]
(iii) temperature θ_{2} at time $t=0$ less than θ_{1}
(d) view thermometer at right angles [1]
(e) any one from:

- room temperature/other environmental factor
- volume/mass/quantity/amount of hot water
- initial temperature of the hot water
- initial temperature of the cold water
- initial temperature of the water

7 (a stopwatch/stopclock
(b) any three from:

- length of rod
- diameter/thickness/area (of cross-section) of rod
- amount of wax/type of wax
- weight/size/mass of marker
- position for the markers
- (Bunsen) flame /(rate of) heating
- position of Bunsen/flame
- position of rod on tripod
(c) temperature too high
or thermometer only measures up to about $100^{\circ} \mathrm{C}$ or small range
thermometer/bulb can't make proper contact [1]

