LightQuestion Paper 5

Level	IGCSE
Subject	Physics
Exam Board	CIE
Topic	Properties of Waves. Including Light and Sound
Sub-Topic	Light
Paper Type	Alternative to Practical
Booklet	Question Paper 5

Time Allowed: 63 minutes

Score: /52

Percentage: /100

1 IGCSE students are investigating the magnification produced by a converging lens.

The apparatus is set up as shown below.

Fig. 5.1

The screen is moved until a sharp image of the object is seen on the screen.

(a) (i) On Fig. 5.1, carefully measure *u* and record the value.

—	
u —	

(ii) On Fig. 5.1, carefully measure *d*, the distance between the illuminated triangle and the screen when the image is sharp, and record the value.

(iii) Calculate a value m for the magnification, using your answers to (a)(i) and (a)(ii), and the equation $m = \frac{d-u}{u}$.

(b) The illuminated triangle is shown in Fig. 5.2. The image of the triangle seen on the screen is shown in Fig. 5.3.

Fig. 5.2

Fig. 5.3

(i)	Measure $h_{\rm o}$, the height of the illuminated triangle, as shown in Fig. 5.2, and record the value.
(ii)	$h_{\rm o} =$ Measure $h_{\rm i}$, the height of the image on the screen, as shown in Fig. 5.3, and record the value.
	$h_{i} = \dots$

(iii) Calculate M, another value for the magnification, using your answers to **(b)(i)** and **(b)(ii)**, and the equation $M = \frac{h_i}{h_0}$.

<i>M</i> =	 	 		 							 				
													[2	2	

justification

[2]

(d) (i)	Describe one difficulty the students might have found when measuring the height of the image on the screen.
	Suggest a solution for the problem.
	difficulty
	solution
	[2]
(ii)	Suggest one further precaution which should be taken to make the experiment reliable.
	[1]
	[Total: 9]

2 The IGCSE class is determining the focal length of a converging lens.

Fig. 4.1 shows the apparatus used to produce an image on the screen.

	lens
	Fig. 4.1
(a) (i)	On Fig. 4.1, measure the distance u between the illuminated object and the centre of the lens.
	<i>u</i> =
(ii)	On Fig. 4.1, measure the distance v between the centre of the lens and the screen.
	v =[2]
(b) (i)	Calculate uv.
	<i>uv</i> =
(ii)	Calculate <i>u</i> + <i>v</i> .
	<i>u</i> + <i>v</i> =
	[1]

(iii) Calculate x using the equation $x = \frac{uv}{(u+v)}$.

(c) Fig. 4.1 is drawn $1/10^{th}$ of actual size. The focal length f of the lens is given by the equation f = 10x.

Calculate a value for the focal length f of the lens, giving your answer to a suitable number of significant figures for this experiment.

(a)	the screen to produce a well-focused image.
	She records the distance v between the centre of the lens and the screen as $v = 18.2$ cm. She finds it difficult to decide the exact point at which the image is sharpest.
	Suggest a range of <i>v</i> values for which the image may appear well-focused.
	range of <i>v</i> values = to [1]
(e)	State two precautions that you could take in this experiment to obtain reliable results.
	1
	2
	[2]
	[Total: 9]

The IGCSE class is determining the focal length of a converging 3

Fig. 4.1 shows the apparatus. lens.

		object	screen
		lens	
		Fig. 4.1	
(a)	(i)	On Fig. 4.1, measure and record the dista object and the lens.	nce u , in mm, between the illuminated
			<i>u</i> = mm
	(ii)	Measure and record the distance v , in mm, on the screen.	from the centre of the lens to the image
			v = mm [1]
	(iii)	Calculate the value of uv.	
			uv =
	(iv)	Calculate the value of $(u + v)$.	
		(<i>u</i> +	v) =
	(v)	Calculate a value f_1 for the focal length of the	ne lens, using the equation $f_1 = \frac{uv}{(u+v)}$.
			f ₁ =[2]
(b)	the	tudent does not move the position of the scre lens towards the screen until a smaller, shar the screen.	•
	The	e new values of <i>u</i> and <i>v</i> are	<i>u</i> =
			v – 25 mm

$$u = \frac{42 \,\mathrm{mm}}{v} = \frac{25 \,\mathrm{mm}}{v}$$

(i) Calculate the value of *uv*.

(ii) Calculate the value of (u + v).

$$(u+v) = \dots$$

	(iii)	Calculate a second value f_2 for the focal length of the lens, using the equation
		$f_2 = \frac{uv}{(u+v)}.$
		$f_2 = \dots $ [1]
(c)	A st	sudent suggests that f_1 should be equal to f_2 .
		te whether the results support this suggestion. Justify your answer by reference to results.
	stat	ement
	just	ification
		[2]
(d)	Sta	te two precautions that you could take in this experiment to obtain reliable results.
	1	
	2	
		[2]

(e) The illuminated object is triangular, as shown in Fig. 4.2.

Fig. 4.2

Sketch the image you would see on the screen.

4 An IGCSE class is investigating the reflection of light by a plane mirror.

One student's ray-trace sheet is shown in Fig. 4.1.

Fig. 4.1

- (a) In the first part of the experiment, a plane mirror is to be placed on line CD.
 - (i) Draw a normal to **AB** at point **N**, towards the top of the page. Label the other end of this normal **L**.
 - (ii) Two pins P_1 and P_2 are placed on line LN. Label suitable positions for P_1 and P_2 .

(b)	The mirror	is placed	on line	CD	and the	images	of P.	and	P_2	are	viewed	from	the
	direction in	dicated by	the eye	in Fi	g. 4.1.			•	_				

Two pins P_3 and P_4 are placed so that the images of P_1 and P_2 , and the pin P_3 all appear exactly in line with P_4 .

(i) Draw a line passing through P₃ and P₄ and reaching AB.

(d) A student suggests that θ should always be equal to 2α .

- (ii) Measure the angle θ between this line and the normal **NL**. Record this value in Table 4.1. [1]
- (c) The mirror is then moved to line **EF** and pins P₅ and P₆ are placed in line with the new images.

Repeat steps (b)(i) and (b)(ii) using the new mirror line and pin positions. [1]

Table 4.1

	<i>α</i> /°	θ/°
mirror on CD	20	
mirror on EF	30	

Г	1	1	
L	ı	J	

State	whether	the	experimental	results	support	this	idea.	Justify	your	answer	with
	nce to the		•		• • •			,	,		
			unto:								

statement	
justification	
	[2]

(e) Suggest two precautions that could be taken to ensure accurate results from this experiment.

	•••••
2	
	[2

[2]

5 The IGCSE class is determining the focal length of a lens.

The apparatus is shown in Fig. 4.1.

Fig. 4.1

- (a) A student places the lens between the object and the screen and close to the object. She moves the lens towards the screen until a clearly focused, **enlarged** image is formed on the screen.
 - (i) On Fig. 4.1, measure and record the distance *d* between the object and the screen.

d =

(ii) On Fig. 4.1, measure and record the distance *x* between the centre of the lens and the screen.

- (iii) Fig. 4.1 is drawn one tenth actual size.
 - **1.** Calculate the actual distance *D* between the object and the screen.

D =

2. Calculate the actual distance *X* between the centre of the lens and the screen.

(b) Without moving the illuminated object or the screen, the student moves the lens towards the screen until a clearly focused, **diminished** image is formed on the screen. She measures the distance Y between the centre of the lens and the screen: Y = 19.0 cm.

Calculate the focal length f of the lens using the equation $f = \frac{XY}{D}$.

$$f = \dots [2]$$

(c)	The student turns the lens through an angle of 180° and repeats the procedure obtaining a value for the focal length $f = 14.7$ cm.
	Theory suggests that the two values of the focal length $\it f$ should be the same. State whether the results support this theory and justify your answer by reference to the results.
	statement
	justification
	[2]
(d)	Briefly describe a precaution that you would take in this experiment in order to obtain a reliable result.
	[1]
	[Total: 8]

6 The IGCSE class is determining the refractive index of the material of a transparent block.

Fig. 5.1 shows a student's ray-trace sheet.

ray-trace sheet

(a)	AB	CD is a transparent block placed, largest face down, on the ray-trace sheet.
	(i)	On Fig. 5.1, draw a normal at the centre of side AB . Label the point E where the normal crosses AB . Mark a point N on the normal 4.0 cm from E and outside the outline of the block.
	(ii)	Draw a line \mathbf{NF} from \mathbf{N} to the block. This line must be to the right of the normal and at an angle of 20° to the normal. Mark the point \mathbf{F} where the line meets \mathbf{AB} . Measure and record the length a of the line \mathbf{NF} .
		a =[2]
(b)	ima	student places two pins P_1 and P_2 on the line through ${\bf F}$ and ${\bf N}$. She observes the ges of P_1 and P_2 through side ${\bf CD}$ of the block so that the images of P_1 and P_2 ear one behind the other.
	the	e places two pins P_3 and P_4 between her eye and the block so that P_3 and P_4 and images of P_1 and P_2 , seen through the block, appear one behind the other. The itions of P_3 and P_4 are marked on Fig. 5.1.
	(i)	Draw a line joining the positions of P_3 and P_4 . Continue the line until it meets CD . Label this point G .
	(ii)	Draw the line GF and continue it until it meets the normal. Label this point H .
	(iii)	Measure and record the length b of the line FH .
	(iii)	b =
	(iii) (iv)	
		$b = \dots $
		$b = \dots $
(c)	(iv)	$b = \frac{b}{a}.$ [3] Calculate the refractive index n of the material of the block, using the equation $n = \frac{b}{a}$.
(c)	(iv)	Calculate the refractive index n of the material of the block, using the equation $n=\frac{b}{a}$. $n=$
(c)	(iv)	Calculate the refractive index n of the material of the block, using the equation $n=\frac{b}{a}$. $n=$