Electrical Circuits Mark Scheme 6

Level	IGCSE
Subject	Physics
Exam Board	CIE
Торіс	Electricity and Magnetism
Sub-Topic	Electrical Circuits
Paper Type	Alternative to Practical
Booklet	Mark Scheme 6

Time Allowed:	54 minutes
Score:	/45
Percentage:	/100

1	(a	table: l in m V in V, I in A, R in Ω (words or symbols) R values 1.6875, 3.4375, 5.03125 (2 or more significant figures) R values consistent 2 or 3 significant figures	[1] [1] [1] [1]
	(b)	<i>R</i> (directly) proportional to <i>l</i> o.w.t.t.e. numerical example given, allow two ratios idea of within limits of experimental accuracy	[1] [1]
	(c)	prediction $10 \rightarrow 10.35$, no unit needed working shown	[1] [1]
	(d)	two from: wire gets hot / burns out meter damaged wire gets floppy / expands higher meter readings / readings off scale power source cuts out / fuses resistance of wire increases	[2] [Total: 11]
2	(a	correct symbol correct position	[1] [1]
((b)	table: <i>V l</i> values correct 8.35, 3.58, 2.08, 1.39, 1.00 consistent 2 or 3 significant figures unit V/m	[1] [1] [1]
	(c)	statement matches readings (expect NO) justification matches statement and by reference to results V/l not constant, as l increases V decreases	[1] [1]
	(d)	any one of: check for zero error avoidance of parallax error explained switch off between readings	
		repeats	[1]
			[Total: 8]

3	(a)	diagram: correct symbols for ammeter, voltmeter and lamps (lamp – cross at least ½ diameter by eye) (ignore power source) voltmeter position correct lamps in parallel in a correct circuit (e.g. single voltmeter)	[1] [1] [1]
	(b)	table: V, A, Ω (any in symbols, words or a mixture) Correct <i>R</i> values 6.13, 6.00, 3.11 Consistent 2 or 3 significant figures	[1] [1] [1]
	(c)	statement matches readings (expect NO) justification matches statement and by reference to <u>resistance results</u> (don't need numbers)	[1] [1]
			[Total: 8]

(a	0.3 – 0.31	[1]
(b)	Ω, A 10.1	[1] [1]
(c)	correct calculation of $0.5I_{o}$ shown (ecf) 10(Ω)	[1] [1]
(d)	diagram: resistors in parallel voltmeter symbol voltmeter position	[1] [1] [1]
		[Total 8]
(a	2 – 2.1 (V)	[1]
(b)	R in Ω , V in V (symbols or words)	[1]
	(ii) <u>10.1</u>	[1]
(c)	graph: axes labelled and scales suitable (origin included) all plots correct to nearest ½ small square (must be visible) (-1 for first incorrect plot, -2 for second)	[1] [2]
	(allow 3 good plots on line with one anomaly) thin (solid) line/neat plots to <1/2 square	[1] [1]
(d)	method clearly shown on graph (extension follows trend of line/curve, can be dotted) (contradictory calculation negates mark) V correct to ½ small square (ignore unit) expect 1.6 V approx (allow candidate value for a 'reasonable' attempt at a line but not if clearly wrong trend or forced – e.g. to 2 or 0)	[1] [1]
	(a (b) (c) (d) (c) (d)	 (a 0.3-0.31 (b) Ω, A 10.1 (c) correct calculation of 0.5<i>I</i>₀ shown (ecf) 10(Ω) (d) diagram: resistors in parallel voltmeter symbol voltmeter position (a 2-2.1 (V) (b) <i>R</i> in Ω, <i>V</i> in V (symbols or words) (ii) 10.1 (c) graph: axes labelled and scales suitable (origin included) all plots correct to nearest ½ small square (must be visible) (-1 for first incorrect plot, -2 for second) well judged best fit line/curve (allow 3 good plots on line with one anomaly) thin (solid) line/neat plots to <1/2 square (d) method clearly shown on graph (extension follows trend of line/curve, can be dotted) (contradictory calculation negates mark) V correct to ½ small square (ignore unit) expect 1.6 V approx (allow candidate value for a 'reasonable' attempt at a line but not if clearly wrong trend or forced – e.g. to 2 or 0)

[Total: 10]