Atomic Structure Mark Scheme 3

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1C)
Topic	Principles of Chemistry
Sub-Topic	Atomic Structure
Booklet	Mark Scheme 3

Question number				Answer	Notes	Marks
1	a	i	M1	35 on lines 1 and 3		1
			M2	44 on line 2		1
		ii		isotopes		1
		iii		same number of electrons (in outer shell) OR same electron arrangement or configuration	I gnore references to protons and neutrons unless incorrect, eg different numbers of protons, same number of neutrons	1
		iv	M1	${ }^{79} \mathrm{Br}$	Accept just 79	1
			M2	79 is closer to 79.9/more accurate value	Accept 79 is closer to relative atomic mass M2 dependent on M1	1

Question number				Answer	Notes	Marks
1	b	i	M1	$H \times{ }_{x}^{x x}{\underset{x x}{B_{x}}}_{x}^{x}$	shared pair of electrons	1
			M2		other electrons correct (not necessary to be paired)	1
					M2 dependent on M1 Accept any combinations of dots and crosses Circles not needed but if drawn must overlap or touch - if not, then $0 / 2$ Ignore inner electron shells even if incomplete or incorrect	
					Do not penalise incorrect symbols, eg br/BR If Na used in place of H, max 1 No marks if ions shown	
		ii	M1	shared (two/pair of) electrons	Not share an electron	1
			M2	attracted to both nuclei	M2 dependent on M1 or near miss eg the electrons are attracted to the nucleus scores 0 the electrons are attracted to both nuclei scores M2 but not M1	1
					$0 / 2$ if references to ions / ionic bond / intermolecular forces	

Question number		Answer	Notes	Marks	
1	b	iii	M1	(sodium bromide) ionic bonding / + and - ions	Reject covalent bonding / shared electrons
		M2	(hydrogen bromide) attraction between molecules /intermolecular forces (of attraction)	Accept dipole-dipole attractions / van der Waals' forces / IMF / vdW Ignore hydrogen bonds Reject ions/ionic	1
		M3	ionic bonding stronger OR IMF / attractions between HBr molecules weaker	Accept ionic bonds stronger M3 dependent on comparison of intermolecular forces and ionic bonding Accept correct references to energy needed to overcome bonding / attractions	1

Question number				Answer			Notes	Marks
1	c		M1	$\begin{array}{\|c} \hline \mathrm{Na} \\ \frac{13.8}{23} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Br} \\ \frac{47.9}{80} \end{gathered}$	$\begin{gathered} 0 \\ \frac{38.3}{16} \end{gathered}$	0/3 if division by atomic number(s) /division wrong way round If only two elements shown correctly, only M1 can be awarded	1
			M2	0.6	0.6	2.4	Accept 1: 1: 4	1
			M3	NaBrO_{4}			Accept elements in any order Penalise M3 for incorrect symbol, eg SBrO_{4} or NaBO_{4}	1
							Dividing by 160 instead of 80 gives Na2BrO8 Dividing by 32 instead of 16 gives NaBrO 2 Award 2 in these cases Both these errors give Na 2 BrO 4 Award 1 in this case	
							Correct final answer scores 3 marks	
							Total	16

Question number	Answer	Accept	Reject	Marks
2 (a) (i)		lower case letters		1
(ii)	D			1
(iii)				1
	C			1
(b)	M1 - (a substance) containing (two or more) elements IGNORE atoms for M1 only M2 - bonded (together) /chemically combined (in a fixed ratio)	chemically joined	mixture for M1 only molecules/particles bonded, etc for M1 and M2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c) (i)	M1 - Na loses electron(s)			1
	M2-Cl gains electron(s)			1
	M3 - Na becomes 2.8 AND chlorine becomes 2.8.8			1
	If incorrect number of electrons transferred, max 2			
	IGNORE references to full shells			
	max 1 for mention of covalent bonding			
	All 3 marks can be scored from correct dot and cross diagrams showing electron transfer			

(Total marks for Question $2=11$ marks)

Question number	Answer	Notes	Marks
3 (a) (i) (ii)	$\begin{aligned} & \text { A (Ag) } \\ & \text { D (Zr) } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b) (i) (ii) (iii) (iv) (v)	3 (The atom has) three electrons in its outer / valence shell 3 (The atom has) electrons in three shells / three shells are occupied (with electrons) aluminium / Al	'energy level' for 'shell' ignore references to inner shells ignore 'it has a valency of 3' 'energy levels’ for 'shells’ accept 'it has three shells'	1 1 1 1 1
(c)		accept any symbol for electrons, eg dots, the letter ' e '	1

Question number	Answer				Notes	Marks 1
4 (a)	C (halogens)					
(b) (i)	M1 atoms of the same element				accept 'atoms with the same atomic number' / 'atoms with the same number of protons' accept 'different mass numbers' / 'different numbers of neutrons' ignore references to electrons unless incorrect	1
	M2 with different masses					
(ii)	I sotope	Number of protons	Number of neutrons	Number of electrons		3
	${ }_{35}^{79} \mathrm{Br}$	35	44	35		
	${ }_{35}^{81} \mathrm{Br}$	35	46	35		

	M1 first column correct M2 second column correct M3 third column correct		
(c)	ethane - no change (in colour)	accept '(stays) orange' ignore 'no reaction' /'nothing happens' ignore 'discolours' ignore starting colour of bromine	1
	ethene - (orange to) colourless / decolourises	1	

Question number	Answer	Notes	Marks
5 a	C (lithium reacts with water to form an alkali)		1
b	A (have the same number of outer shell electrons)		1
C	```(similar) bubbles / fizzing / effervescence OR moves / darts / floats OR gets smaller / disappears potassium shows a flame / sparks / explodes OR potassium melts / forms ball```	Accept gas given off /evolved/formed/produced Accept hydrogen gas Ignore identity of gas Accept dissolves Accept reverse arguments for lithium	1 1
d	$\begin{aligned} & \mathrm{K}_{2} \mathrm{O} \\ & \mathrm{KCl} \end{aligned}$	Accept $\mathrm{K}_{2} \mathrm{O}_{2}$ and KO_{2} Reject KO If formula shown as product of an equation, ignore reactants and balancing Ignore coefficients	1 1
e	s l aq g		1
f	85 AND 87 calculated (even if not identified) $(85 \times 0.72)+(87 \times 0.28)=85.6$	Accept $37+48$ and $37+50$ Correct final answer $=2$ marks 85.5 or $85.56=1$ mark No ECF from incorrect mass numbers Ignore units	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
		Total 9 marks	

