Atomic Structure
 Mark Scheme 5

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Topic	Principles of Chemistry
Sub-Topic	Atomic Structure
Booklet	Mark Scheme 5

Time Allowed:	41 minutes
Score:	$/ 34$
Percentage:	$/ 100$
Grade Boundaries:	

| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $>90 \%$ | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% |

Question number	Answer	Accept	Reject	Marks
1 (a)	Element Arrangement of electrons in atom Arrangement of electrons in ion Charge on ion 2.8 .8 $(1)+/+1$ 2.8 .8 $2-/-2$ M1 - both arrangements correct M2 - charge on potassium ion M3 - charge on sulfide ion	$\begin{aligned} & \mathrm{K}^{(1)+} / \mathrm{K}^{+1} \\ & \mathrm{~S}^{2-} / \mathrm{S}^{-2} \\ & \\ & \text { positive for potassium } \\ & \text { and negative for sulfide } \\ & \text { for } 1 \text { mark } \end{aligned}$		3
(b) (i) (ii)	ions move/travel (to the electrodes) M1 (electrostatic) forces (of attraction) between (oppositely charged) ions M2 are (relatively) strong M3 large amount of energy required to overcome the forces / separate the ions from the lattice M2 dep on mention of forces (of attraction) or bonds Mention of covalent bonds or intermolecular forces no M1	ions are free to move / ions are mobile ionic bonding / ionic bonds break the bonds	electrons free to move	1 3

Total 7 marks

Question number					Answer	Notes	Marks
2	a			cross in box C	(neutrons and protons)		1
	b	i		6			1
		ii		14			1
	C			cross in box B	(the numbers of electrons and protons are equal)		1
	d		M1	same number of / (they both ha	tons 6 protons	Ignore references to electrons	1
			M2	different numb	f neutrons / more neutrons	If number of extra neutrons specified, it must be 2 Reject different numbers of electrons	1
						Ignore references to atomic number and mass number	
	e			cross in box B	(2.4)		1
TOTAL							7

Question number	Expected Answer				Accept	Reject	Marks
3 (a)							
		Proton	Neutron	Electron			4
	relative mass	1			+1	- 1 / one	
	relative charge		0	-		Zero minus one /negative	
	1 mark for each correct answer						
(b) (i) (ii)	Protons AND electrons $=1$ neutrons $=2$				one two		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	with different masses Ignore references to electrons				atoms with same atomic number / number of protons / proton number	molecules / compounds for first mark only	1 1
					with different mass numbers / different numbers of neutrons / different neutron numbers	different relative atomic masses for second mark only	

Question number	Expected Answer	Accept	Reject	Marks
3(c)	$((79 \times 50.7)+(81 \times 49.3)) / 100$			
	$(79 \times 0.50 .7)+(81 \times 0.493)$			1
	$\text { = } 79.99$ Allow 1 mark for a single transcription error (e.g. 43.9 instead of 49.3) Ignore units such as grams	Correct answer on its own scores 2		1
			Total	10

Question number	Answer	Notes	Marks	
4a A (the crystal dissolves) b A (it is all blue)	1			
c i	4		1	
	ii	21		1

Question number	Answer			Notes	Marks
5 a				M1 (bromine) liquid / (I) M2 (iodine) black allow (dark) grey	2
	Halogen	Colour	Physical state		
	bromine		liquid		
	iodine	black			
b	$\begin{array}{ccc} \bullet \bullet & \times x \\ : & \mathrm{Br} & \times \\ \bullet & \mathrm{P} \\ \bullet & & \mathrm{x} \\ & : & \mathrm{Br} \\ & & \bullet \bullet \end{array}$	Br :		M1 three bonding pairs of electrons correct M2 rest of electrons correct Accept any combination of dots and crosses Ignore circles	2
c	$\mathrm{PBr}_{3}+3$	$\rightarrow 3 \mathrm{HBr}$	PO_{3}	M1 all formulae correct M2 balanced M2 DEP on M1	2

