The Periodic Table

Mark Scheme1

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1C)
Topic	Principles of Chemistry
Sub-Topic	The Periodic Table
Booklet	Mark Scheme 1

Time Allowed:			90 minutes					
Score:								
Percen			00					
Grade Boundaries:								
9	8	7	6	5	4	3	2	1
>90\%	80\%	70\%	60\%	50\%	40\%	30\%	20\%	10\%

www.igexams.com

Question number	Answer	Notes	Marks
1 a	atomic number	Accept proton number Accept number of protons	1
b	(relative) atomic mass	Reject mass number	1
	electrons electrons protons AND neutrons protons AND electrons neutrons	Names can be in either order Names can be in either order	1 1 1 1 1

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Expected Answer \& Accept \& Reject \& Marks \\
\hline 2 (a) \& \begin{tabular}{l}
(increasing) atomic number(s) \\
IGNORE references to electrons / electronic configurations
\end{tabular} \& proton number / number of protons \& ```
mass number /
RAM
``` \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& sodium / potassium fluorine / chlorine / bromine \& \[
\begin{aligned}
\& \mathrm{Na} / \mathrm{K} \\
\& \mathrm{~F} / \mathrm{Cl} / \mathrm{Br} / \mathrm{F}_{2} / \mathrm{Cl}_{2} / \mathrm{Br}_{2}
\end{aligned}
\] \& fluoride / chloride / bromide \&  \\
\hline (c) (i) \& \begin{tabular}{l}
sodium OR potassium \\
AND \\
fluorine OR chlorine OR bromine OR hydrogen \\
Answers can be in either order \\
IGNORE incorrect symbols/formulae if names are correct \\
Marks do not have to be CQ on (c)(i), and all marks can be scored here for correct diagrams of the ions in a hydrogen halide \\
M1 Na or K with 8 electrons \\
M2 \(\mathrm{F}, \mathrm{Cl}\) or Br with 8 electrons \\
IGNORE diagrams showing initial electron configurations
M3 (1)+ AND (1)- charges correct \\
IGNORE inner shells even if incorrect
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{Na} / \mathrm{K} \\
\& \mathrm{~F} / \mathrm{Cl} / \mathrm{Br} / \mathrm{H} / \mathrm{F}_{2} / \mathrm{Cl}_{2} / \\
\& \mathrm{Br}_{2} / \mathrm{H}_{2}
\end{aligned}
\] \\
0 electrons \\
H with 2 electrons
\end{tabular} \& \begin{tabular}{l}
fluoride / \\
chloride / \\
bromide / \\
hydride \\
Incorrect \\
electron \\
transfer for M1 \\
and M2
\end{tabular} \& 1

1
1
1
1
1 <br>
\hline
\end{tabular}

Allow any combination of dots and crosses
If shown covalently bonded, then max. 1 for correct
charges if given
If the position of 2 electrons shown between the two
species makes it hard to be sure that the bonding is definitely ionic (and not covalent), do not award M1 or

| Question <br> number Expected Answer Accept Reject Marks <br> 2(d) (fluorine reacts) vigorously / instantly / explosively / <br> violently / very quickly / very rapidly <br> IGNORE references to electron transfer, even if <br> incorrect the quickest / more quickly <br> than chlorine fluorine <br> reaction slower <br> than chlorine <br> reaction  <br> (to form) iron(III) fluoride ferric fluoride / FeF 3    |
| :--- |
| \begin{tabular}{\|l|l|l|l|c|}
\hline
\end{tabular} |
| (e) |
| M1 colourless (IGNORE clear) |
| M2 orange / yellow /brown |
| IGNORE qualifiers such as light / dark |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3 (a) (i) <br> (ii) | $\begin{aligned} & \mathrm{A}(\mathrm{Ag}) \\ & \mathrm{D}(\mathrm{Zr}) \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| (b) (i) <br> (ii) <br> (iii) <br> (iv) <br> (v) | 3 <br> (The atom has) three electrons in its outer / valence shell <br> 3 <br> (The atom has) electrons in three shells / three shells are occupied (with electrons) <br> aluminium / Al | 'energy level' for 'shell' ignore references to inner shells ignore 'it has a valency of 3 ' <br> 'energy levels' for 'shells' accept 'it has three shells' | 1 <br> 1 <br> 1 <br> 1 |
| (c) |  | accept any symbol for electrons, eg dots, the letter ' $e$ ' | 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 a | A simple molecular <br> B giant covalent <br> C giant metallic <br> D giant ionic |  | 4 |
| b i <br> ii | M1 electron transfer AND correct direction <br> M2 magnesium (atoms) lose 2 electrons <br> M3 (each) chlorine (atom) gains an electron | If any reference to sharing electrons, $0 / 3$ <br> If any reference to covalent bonds, MAX 2 <br> Penalise atoms in place of electrons each time <br> Accept two chlorine (atoms) gain two electrons Reject chloride in place of chlorine <br> M2 and M3 both correct also scores M1 <br> M1 for electronic configuration of $\mathrm{Mg}^{2+}$ ion <br> M2 for electronic configuration of $\mathrm{Cl}^{-}$ion <br> M3 for both charges correct <br> Accept any combination of dots and crosses Charges can be shown anywhere so long as there is no ambiguity <br> Brackets not essential <br> Ignore 2 before or after chloride ion <br> $0 / 3$ for any diagram showing shared electrons <br> Ignore diagrams showing electron transfer - <br> mark only the ions formed <br> Penalise missing inner shell(s) once only <br> If two $\mathrm{Cl}^{-}$ions shown, both must be correct | 3 |


|  | Do not penalise empty third shell in $\mathrm{Mg}^{2+}$ <br> If only 2.8 etc notations without diagram, only <br> M3 can be awarded |  |
| :--- | :--- | :--- | :--- |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 c |  | M1 for 4 electrons in both $\mathrm{C}=\mathrm{O}$ bonds <br> These can be shown in a vertical or horizontal line <br> M2 all other electrons correct <br> M2 DEP on M1 <br> Accept any combination of dots and crosses <br> Ignore inner electrons even if wrong <br> Ignore circles around atoms <br> Non-bonding electrons do not need to be paired | 2 |
| d i | M1 positive ions / cations <br> M2 delocalised electrons / sea of electrons <br> M3 crystal / lattice / regular arrangement / array / giant structure / OWTTE | Not just ions <br> Reject reference to protons/nuclei/atoms in place of cations for M1, but M2 and M3 can still be awarded <br> Ignore free electrons <br> Ignore layers / planes / rows or similar Accept (electrostatic) attraction between positive ions and electrons <br> 0/3 if reference to ionic bonding / covalent bonding / molecules <br> / intermolecular forces (eg van der Waals') | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 d ii | M1 layers / sheets / planes / rows AND (positive) ions / atoms / particles <br> M2 slide (over each other) | Allow OWTTE, eg slip / flow / shift / roll / move <br> M2 DEP on mention of EITHER layers or equivalent OR mention of ions or equivalent <br> Do not award M2 if protons / electrons / nuclei / molecules in place of ions, etc <br> If reference to ionic bonding / covalent bonding / molecules / intermolecular forces, no marks | 2 |
|  |  | Total 17 marks |  |


| Question number | Expected Answer | Accept | Reject | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 5(a) (i) <br> (ii) <br> (iii) | 12 <br> M1-2 <br> M2 - two electrons in outer/valence shell Award M2 if M1 missing but not if incorrect Ignore references to magnesium and 2.8.2 $x^{2+}$ | roman numeral $\mathrm{Mg}^{2+}$ |  | 1 <br> 1 <br> 1 <br> 1 |
| (b) | $\begin{aligned} & \mathbf{M 1}-(79 \times 24)+(10 \times 25)+(11 \times 26) \\ & \text { M2 - divide by } \underline{100} \\ & \text { M3 - } 24.3 \end{aligned}$ <br> Mark M2 and M3 csq on M1 if one minor slip in numbers in M1 (eg 97 instead of 79 or 25 instead of 24) <br> M3 dep on M2 <br> Correct answer with no working scores 3 IGNORE units | $(0.79 \times 24)+(0.10 \times 25)+(0.11$ x 26) for 2 marks <br> 24.32 with no working scores 2 |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |

(Total marks for Question $5=7$ marks)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 (a) i | 5 |  | 1 |
| ii | 11 |  | 1 |
| iii | 5 |  | 1 |
| iv | 6 |  | 1 |
| v | 5 |  | 1 |
| 6 (b) i | more |  | 1 |
| ii | more |  | 1 |
| iii | the same number of |  | 1 |
| 6 (c) | cross in box D (2.8.3) |  | 1 |
|  |  | Total | 9 |


| Question number |  |  |  | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | a | i | M1 | 35 on lines 1 and 3 |  | 1 |
|  |  |  | M2 | 44 on line 2 |  | 1 |
|  |  | ii |  | isotopes |  | 1 |
|  |  |  |  |  |  |  |
|  |  | iii |  | same number of electrons (in outer shell) OR <br> same electron arrangement or configuration | I gnore references to protons and neutrons unless incorrect, eg different numbers of protons, same number of neutrons | 1 |
|  |  | iv | M1 | ${ }^{79} \mathrm{Br}$ | Accept just 79 | 1 |
|  |  |  | M2 | 79 is closer to 79.9/more accurate value | Accept 79 is closer to relative atomic mass M2 dependent on M1 | 1 |


| Question number |  |  |  | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | b | i | M1 | $H \times{ }_{x}^{x x}{\underset{x x}{B_{x}}}_{x}^{x}$ | shared pair of electrons | 1 |
|  |  |  | M2 |  | other electrons correct (not necessary to be paired) | 1 |
|  |  |  |  |  | M2 dependent on M1 <br> Accept any combinations of dots and crosses <br> Circles not needed but if drawn must overlap or touch - if not, then $0 / 2$ Ignore inner electron shells even if incomplete or incorrect |  |
|  |  |  |  |  | Do not penalise incorrect symbols, eg br/BR If Na used in place of H, max 1 No marks if ions shown |  |
|  |  | ii | M1 | shared (two/pair of) electrons | Not share an electron | 1 |
|  |  |  | M2 | attracted to both nuclei | M2 dependent on M1 or near miss eg the electrons are attracted to the nucleus scores 0 the electrons are attracted to both nuclei scores M2 but not M1 | 1 |
|  |  |  |  |  | $0 / 2$ if references to ions / ionic bond / intermolecular forces |  |


| Question <br> number |  | Answer | Notes | Marks |  |
| :---: | :---: | :---: | :--- | :--- | :---: |
| 7 | b | iii | M1 | (sodium bromide) ionic bonding / + and - ions | Reject covalent bonding / shared <br> electrons |
|  |  | M2 | (hydrogen bromide) attraction between <br> molecules <br> /intermolecular forces (of attraction) | Accept dipole-dipole attractions / van <br> der Waals' forces / IMF / vdW <br> Ignore hydrogen bonds <br> Reject ions/ionic | 1 |
|  |  | M3 | ionic bonding stronger <br> OR <br> IMF / attractions between HBr molecules weaker | Accept ionic bonds stronger <br> M3 dependent on comparison of <br> intermolecular forces and ionic bonding <br> Accept correct references to energy <br> needed to overcome bonding / <br> attractions | 1 |


| Question number |  |  |  | Answer |  |  | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | c |  | M1 | $\begin{gathered} \hline \mathrm{Na} \\ \frac{13.8}{23} \end{gathered}$ | $\begin{gathered} \mathrm{Br} \\ \frac{47.9}{80} \end{gathered}$ | $\begin{gathered} 0 \\ \frac{38.3}{16} \end{gathered}$ | $0 / 3$ if division by atomic number(s) /division wrong way round If only two elements shown correctly, only M1 can be awarded | 1 |
|  |  |  | M2 | 0.6 | 0.6 | 2.4 | Accept 1: 1: 4 | 1 |
|  |  |  | M3 | $\mathrm{NaBrO}_{4}$ |  |  | Accept elements in any order Penalise M3 for incorrect symbol, eg $\mathrm{SBrO}_{4}$ or $\mathrm{NaBO}_{4}$ | 1 |
|  |  |  |  |  |  |  | Dividing by 160 instead of 80 gives Na 2 BrO 8 <br> Dividing by 32 instead of 16 gives NaBrO 2 <br> Award 2 in these cases <br> Both these errors give Na 2 BrO 4 <br> Award 1 in this case |  |
|  |  |  |  |  |  |  | Correct final answer scores 3 marks |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | Total | 16 |

