## Chemical Formulae, Equations, Calculations

## Mark Scheme 1

| Level | IGCSE(9-1) |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | Edexcel IGCSE |
| Module | Double Award (Paper 1C) |
| Topic | Principles of Chemistry |
| Sub-Topic | Chemical Formulae, Equations, Calculations |
| Booklet | Mark Scheme 1 |


| Time Allowed: | 53 minutes |
| :--- | :--- |
| Score: | $/ 44$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $>90 \%$ | $80 \%$ | $70 \%$ | $60 \%$ | $50 \%$ | $40 \%$ | $30 \%$ | $20 \%$ | $10 \%$ |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 1 (a) | NB the arrow must point to the solid | ACCEPT a flame <br> if $>1$ arrow drawn, all must be correct | 1 |
| (b) | to condense the (water) vapour / steam | ACCEPT to cool the water vapour ACCEPT to cool/condense the gas (given off) IGNORE to condense the water IGNORE to stop the water escaping as water vapour IGNORE to condense the product | 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 1 (c) | M1 $n\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)=2.50 \div 250$ OR 0.01 (mol) <br> M2 $n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.01 \times 5$ OR $0.05(\mathrm{~mol})$ <br> M3 mass of water $=(0.05 \times 18)=0.9(0)(\mathrm{g})$ <br> OR <br> M1 $5 \times 18$ OR 90 <br> M2 $250(\mathrm{~g}) \rightarrow 90(\mathrm{~g})$ <br> M3 $2.50(\mathrm{~g}) \rightarrow 0.9(0)(\mathrm{g})$ <br> OR <br> M1 $5 \times 18$ OR 90 <br> M2 $90 \div 250 \times 100(\%) \rightarrow 36(\%)$ <br> M3 $36(\%) \times 2.50(\mathrm{~g}) \rightarrow 0.9(0)(\mathrm{g})$ | mark csq throughout <br> correct final answer (with no working) scores 3 <br> ACCEPT calculations that use $A_{\mathrm{r}}$ of Cu as 63.5 (giving $0.9(05)(\mathrm{g})$ as a final answer) <br> M2 subsumes M1 for all methods | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 2 (a) | Solid $\quad$ Amount | ALLOW values (corrected rounded) from 1 sf up to calculator value | 2 |
|  | $\mathrm{KHCO}_{3}$ 年 0.080 |  |  |
|  | $\mathrm{K}_{2} \mathrm{O}$ 0.059 |  |  |
|  | KOH |  |  |
|  | $\mathrm{K}_{2} \mathrm{CO}_{3}$ 0.040 |  |  |
|  | ```all four correct = 2 marks three correct = 1 mark``` |  |  |
| (b) | M1 equation 3 <br> M2 the (mole) ratio of $\mathrm{KHCO}_{3}$ to $\mathrm{K}_{2} \mathrm{CO}_{3}$ /reactant to product is $2: 1$ | mark csq on amounts given in part (a) | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
|  | cross in box A (zinc sulfate) |  | 1 |
| ii | cross in box $B$ (iron) cross in box $C$ (magnesium) | Apply list principle - 3 crosses $=\max 1$ 4 or 5 crosses $=0$ marks | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 3 (b) | burns with a pop/squeak OR use burning/lit splint/flame to see if pop/squeak | Must be reference to test and result Reference to splint/match with no indication of flame is not enough Reject reference to glowing splint Ignore flame extinguished 'Squeaky pop test' on its own is not sufficient | 1 |
| 3 (c) | 2 (1) 2 | Accept multiples and fractions | 1 |
| 3 (d) i | cross in box 3 |  | 1 |
| ii | reversible / can go in both directions <br> / can go backwards and forwards | Ignore references to equilibrium Ignore references to other reaction types (e.g. hydration / oxidation / exothermic) <br> Accept either equation with $\rightleftharpoons$ | 1 |
|  |  | Total | 7 |

www.igexams.com

| Question number | Answer | Accept | Reject | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 4 (a) (i) <br> (ii) <br> (iii) | measuring cylinder <br> M1 44 <br> M2 $\mathrm{cm}^{3}$ <br> M1 $\frac{44 \times 0.01(0)}{1000}$ <br> M2 0.00044(0) <br> Mark csq on answer to (a)(ii) | answers in other correct units, e.g. $0.044 \mathrm{dm}^{3}$ <br> ml <br> 0.44 for 1 mark only correct answer with no working for 2 marks | 0.0004 | 1 <br> 1 <br> 1 <br> 1 <br> 1 |
| (b) | zinc because <br> M1 1 mol zinc reacts with 2 mol HCl <br> M2 only 0.005 mol of zinc are needed <br> M1 is standalone <br> M2 is dep on zinc given as being in excess |  |  | $1$ $1$ |
| (c) (i) <br> (ii) | (rate) increases/faster reaction <br> no effect/same volume (of hydrogen) produced | less time for reaction to take place none/no change | faster time | 1 |
|  |  |  | Total | 9 |


| Question <br> number | Answer | Notes | Marks |  |
| :--- | :--- | :--- | :--- | :---: |
| 5 (a) |  |  |  |  |


|  | Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: |
| (b) | (i) | $25\left(\mathrm{~cm}^{3}\right)$ | accept anomalous point based on graph drawn | 1 |
| (ii) |  | M1 the volumes (of gas) are the same | accept 'no more gas is being produced/collected (after $35 \mathrm{~cm}^{3}$ )' <br> reject 'all of the reactants have reacted' reject 'all of the acid has reacted' ignore refs to $\mathrm{MgCO}_{3}$ dissolving accept refs to $\mathrm{MgCO}_{3}$ being limiting reagent | 2 |
|  |  | M2 therefore the reaction has finished / all of the solid/ $\mathrm{MgCO}_{3}$ has reacted / the solid/ $\mathrm{MgCO}_{3}$ has been used up |  |  |
|  | (iii) | value correctly read to nearest gridline from candidate's graph |  | 1 |
|  | (iv) | value correctly read to nearest gridline from candidate's graph |  | 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $6 \text { (a) (i) }$ <br> (ii) | $\begin{aligned} & 2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2} \\ & \text { redox } \end{aligned}$ | accept halves and multiples <br> accept '(thermal) decomposition' ignore 'oxidation' <br> allow 'reduction' |  |
| (b) (i) <br> (ii) | (tap / dropping / separating) funnel (the gas / it) contains air (from the conical flask) | reject 'filter / thistle funnel' <br> accept 'contains impurities' or ref to possible named impurity eg nitrogen reject 'water vapour' allow 'contains less oxygen' | $1$ |
| (c) | M1 perform reaction with and without catalyst <br> M2 keep remaining variables (eg concentration or volume of hydrogen peroxide / temperature) the same <br> M3 measure time (to fill the gas jar with oxygen) <br> M4 oxygen produced more quickly/at a faster rate/in a shorter time (in experiment) with catalyst <br> OR <br> M1 weigh a sample of manganese(IV) oxide | accept: <br> M1 perform reaction with and without catalyst <br> M2 oxygen produced more quickly/at a faster rate/in a shorter time (in experiment) with catalyst <br> M3 weigh a sample of manganese(IV) oxide (before putting it into the conical flask) <br> M4 the mass at the end of the reaction should be the same as at the start | 4 |


|  | (before putting it into the conical <br> flask) <br> $\mathbf{M 2}$ filter (to remove the solid) <br> $\mathbf{M 3}$ dry the solid (and re-weigh it) <br> $\mathbf{M 4}$ the mass should be the same as <br> before |  |  |
| :---: | :--- | :--- | :---: |
| (d) (i) | $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ <br> (ii) <br> $\mathbf{M 1}$ (Universal Indicator turns) <br> orange/yellow <br> $\mathbf{M 2 ~ ( t h e ~ s o l u t i o n / i t ) ~ i s ~ a c i d i c ~ / ~ c o n t a i n s ~}$ <br> hydrogen <br> ions / contains $\mathrm{H}^{+}$ionsaccept $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ <br> allow products shown as correct ions <br> accept 'red' | allow 'contains sulfurous / sulfuric acid' | 2 |

