Chemical Formulae, Equations, Calculations

Mark Scheme 1

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1C)
Торіс	Principles of Chemistry
Sub-Topic	Chemical Formulae, Equations, Calculations
Booklet	Mark Scheme 1

2

20%

1

10%

Time Allowed:			53 minutes				
Score:		/44					
Percenta	ige:		/100				
Grade Bo	oundaries:						
9	8	7	6	5	4	3	
>90%	80%	70%	60%	50%	40%	30%	

Question number	Answer	Notes	Marks
1 (a)	hydrated copper(II) sulfate open tube ice water NB the arrow must point to the solid	ACCEPT a flame if >1 arrow drawn, all must be correct	1
(b)	to condense the (water) vapour / steam	ACCEPT to cool the water vapour ACCEPT to cool/condense the gas (given off) IGNORE to condense the water IGNORE to stop the water escaping as water vapour IGNORE to condense the product	1

Question number	Answer	Notes	Marks
1 (c)	M1 $n(CuSO_4.5H_2O) = 2.50 \div 250$ OR 0.01 (mol)	mark csq throughout	3
	M2 $n(H_2O) = 0.01 \times 5$ OR 0.05 (mol)	correct final answer (with no	
	M3 mass of water = $(0.05 \times 18) = 0.9(0)$ (g)	working) scores 3	
	OR	ACCEPT	
	M1 5 x 18 OR 90	use A_r of Cu as 63.5 (giving	
	M2 250 (g) → 90 (g)	0.9(05) (g) as a final answer)	
	M3 2.50 (g) \rightarrow 0.9(0) (g)		
	OR	for all methods	
	M1 5 x 18 OR 90		
	M2 90 ÷ 250 x 100 (%) → 36 (%)		
	M3 36 (%) x 2.50 (g) → 0.9(0) (g)		

Question number	Answer		Notes	Marks	
2 (a)	Solid	Iid Amount ALLOW values	2		
	KHCU ₃	0.080		(corrected	
	K ₂ O	0.059		rounded) from	
	КОН	0.099		1 sf up to	
	K ₂ CO ₃	0.040		calculator	
	all four correct = 2 marks three correct = 1 mark		value		
(b)	M1 equation 3			mark csq on amounts given	2
	M2 the (mole) ratio /reactant to pro	o of KHCO3 to K2CO3 oduct is 2:1	3	in part (a)	

Question number	Answer	Notes	Marks
3 (a) i	cross in box A (zinc sulfate)		1
ii	cross in box B (iron) cross in box C (magnesium)	Apply list principle - 3 crosses = max 1 4 or 5 crosses = 0 marks	1 1
3 (b)	burns with a pop/squeak OR use burning/lit splint/flame to see if pop/squeak	Must be reference to test and result Reference to splint/match with no indication of flame is not enough Reject reference to glowing splint Ignore flame extinguished 'Squeaky pop test' on its own is not sufficient	1
3 (c)	2 (1) 2	Accept multiples and fractions	1
3 (d) i ii	cross in box 3 reversible / can go in both directions / can go backwards and forwards	Ignore references to equilibrium Ignore references to other reaction types (e.g. hydration / oxidation / exothermic) Accept either equation with ⇒	1
		Total	7

Q	uesti numb	ion er	Answer	Accept	Reject	Marks
4	(a)	(i)	measuring cylinder			1
		(ii)	M1 44	answers in other correct units, e.g.		1
			M2 cm ³	0.044 dm ³		1
		(iii)	M1 $\frac{44 \times 0.01(0)}{1000}$			1
			M2 0.00044(0)		0.0004	1
			Mark csq on answer to (a)(ii)	0.44 for 1 mark only	0.0004	Ţ
				correct answer with no working for 2 marks		
	(b)		<u>zinc</u> because			
			M1 1 mol zinc reacts with 2 mol HCl			1
			M2 only 0.005 mol of zinc are needed			1
			M1 is standalone			
			M2 is dep on zinc given as being in excess			
	(c)	(i)	(rate) increases/faster reaction	less time for reaction to take place	faster time	1
		(ii)	no effect/same volume (of hydrogen) produced	none/no change		1
					Total	9

Question number	Answer	Notes	Marks
(b) (i)	25 (cm ³)	accept anomalous point based on graph drawn	1
(ii)	M1 the volumes (of gas) are the same	accept `no more gas is being produced/collected (after 35 cm ³)'	2
	M2 therefore the reaction has finished / all of the solid/MgCO ₃ has reacted / the solid/MgCO ₃ has been used up	reject `all of the reactants have reacted' reject `all of the acid has reacted' ignore refs to MgCO ₃ dissolving accept refs to MgCO ₃ being limiting reagent	
(iii)	value correctly read to nearest gridline from candidate's graph		1
(iv)	value correctly read to nearest gridline from candidate's graph		1

6 (a) (i) 2Hg0 (ii) redox (b) (i) (tap) (ii) (the grade of the second of t	$gO \rightarrow 2Hg + O_2$	accept halves and multiples accept '(thermal) decomposition' ignore 'oxidation'	1 1
 (ii) redox (b) (i) (tap) (ii) (the quadratic conic (c) M1 p cataly M2 k conce perox 	х	accept `(thermal) decomposition' ignore `oxidation'	1
(b) (i) (tap) (ii) (the g conic (c) M1 p cataly M2 k conce		allow 'reduction'	
(ii) (the conic conic (c) M1 p cataly M2 k conce	o / dropping / separating) funnel	reject `filter / thistle funnel'	1
(c) M1 p cataly M2 k conce	e gas / it) contains air (from the ical flask)	accept `contains impurities' or ref to possible named impurity eg nitrogen reject `water vapour' allow `contains less <u>oxygen</u> '	1
M3 m oxyge M4 <u>o</u> faster exper OR M1 v	perform reaction with and without alyst keep remaining variables (eg centration or volume of hydrogen oxide / temperature) the same measure time (to fill the gas jar with gen) <u>oxygen produced</u> more quickly/at a er rate/in a shorter time (in eriment) with catalyst	 accept: M1 perform reaction with and without catalyst M2 oxygen produced more quickly/at a faster rate/in a shorter time (in experiment) with catalyst M3 weigh a sample of manganese(IV) oxide (before putting it into the conical flask) M4 the mass at the end of the reaction should be the same as at the start 	4

	(before putting it into the conical flask) M2 filter (to remove the solid)		
	M3 dry the solid (and re-weigh it)		
	M4 the mass should be the same as before		
(d) (i)	$SO_2 + H_2O \rightarrow H_2SO_3$	accept SO ₂ + H ₂ O + $\frac{1}{2}O_2 \rightarrow H_2SO_4$ allow products shown as correct ions	1
(ii)	M1 (Universal Indicator turns) orange/yellow	accept 'red'	2
	M2 (the solution/it) is acidic / contains hydrogen ions / contains H ⁺ ions		