1

10%

Chemical Formulae, Equations, Calculations

Mark Scheme 3

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Торіс	Principles of Chemistry
Sub-Topic	Chemical Formulae, Equations, Calculations
Booklet	Mark Scheme 3

Time Allo	wed:		59 minute	S			
Score:			/49				
Percentag	ge:		/100				
Grade Bo	undaries:						
9	8	7	6	5	4	3	2
>90%	80%	70%	60%	50%	40%	30%	20%

Question number	Answer	Notes	Marks
1 (a)	M1 <u>iron</u> reacted with <u>oxygen</u> M2 all oxygen is reacted / (all)	Accept <u>iron</u> combined/bonded with <u>oxygen</u> Accept iron oxide formed Accept iron is oxidised Ignore iron uses oxygen Ignore iron rusts Ignore references to reacting with water Accept references	2
	<u>oxygen</u> used up / no <u>oxygen</u> left	to 20% or 20cm ³ of the air which is <u>oxygen</u> used up/reacted Reject all iron used up Ignore reaction has finished	
(b)	M1 iron(II) sulfate / iron sulfate	reject any other	2
		oxidation state	2
	M2 hydrogen		

(c)	M1 (Fe ²⁺) – green precipitate/solid	ignore shades reject other colours eg blue- green	2
	M2 (Fe ³⁺) – brown precipitate/solid	accept red-brown / orange brown Ignore rust coloured reject red on its own	
		Allow 1 mark if both answers correct but reversed	
		to colours of solutions	

Question number	Answer	Notes	Marks
2 (a)	M1 (mol NaHCO ₃ =) 10.5/84 or 0.125 M2 (so mass CO ₂ = 0.0625 x 44 =) 2.8 (g)	correct final answer with no working scores 2 accept 2.75 M2 CQ on M1	2
	OR		
	M1 168 g NaHCO ₃ give 44 g CO ₂		
	M2 10.5 g NaHCO ₃ give 2.75 g CO ₂		
(b)	M1 (mol CO $-$) 2.75 : 44 or 0.0625	correct final answer with no working scores 2 if answer is incorrect mark CQ to (a)	2
	M1 (mol $CO_2 = 2.75 \div 44$ or 0.0625		
	M2 (0.0625×24000) = 1500 (cm ³)	CQ answer to M1	
		accept 1.5(00) <u>dm³</u>	

Question number		on er	Answer	Notes	Marks
3	а	i	carbon monoxide		1
		ii	decreases capacity of blood (cells) to carry oxygen OR stops blood (cells) from carrying oxygen	Accept CO combines with haemoglobin / forms carboxyhaemoglobin Accept CO displaces/replaces oxygen in haemoglobin Ignore CO combines with red blood cells Ignore references to suffocation / lack of oxygen in lungs stopping breathing / gas exchange Ignore just affects haemoglobin Reject destroys haemoglobin	1
	b	i	$6KCIO_3 + S + P_4S_3 \rightarrow 6KCI + 4SO_2 + P_4O_{10}$	 M1 coefficient of 6 for KCl M2 coefficient of 4 for SO₂ Max 1 mark if equation unbalanced Ignore 1 for other coefficients 0 for other coefficients loses M2 	2
		ii	activation (energy)		1
				Total	5 marks

Question number	Expected answer	Accept	Reject	Marks
4 (a) (i)	108/24	1 mark for answer of 4 8(2) (molar volume		1
	= 4.5	$= 22.4 \text{dm}^3$)		1
(ii)	M_r of $NaN_3 = 65$	23 + (14 x3)		1
	Moles of NaN ₃ = 3 OR two thirds of (a)(i)			1
	Mass of NaN ₃ = 195 (g) OR moles of NaN ₃ x M_r	Correct answer with no		1
	[Mark consequentially at each stage]	working scores s		
(b) (i)	Removes (harmful) sodium	Produces <u>more</u> nitrogen / gas OR bag inflates more quickly		1
(ii)	$\begin{array}{rcl} K_2O(s) &+& SiO_2(s) \ \rightarrow & K_2SiO_3(s) \\ OR \\ K_2O(s) &+& SiO_2(s) \ \rightarrow & K_2SiO_3(I) \end{array}$			1
	IGNORE same numbers of Na $_2$ O on both sides of equation			
(c) (i)	Precipitation	Double decomposition	Double displacement	1
(ii)	Filtration / filter IGNORE refs to adding water	Decanting / pour off liquid	Sieving / evaporation / distillation / crystallisation / heat	T

Total 9 Marks

Question number	Answer	Accept	Reject	Marks
5 (a) (i)	M1 - $\frac{144}{24000}$	One mark for (144 ÷ 24) = 6		1
	M2 - 0.006			1
(ii)	0.006			1
(iii)	M1 -			1
	0.006			
	M2 - 148 (MUST be a whole number)			
				1
(iv)	$M1 - (CO_3) = 60$			1
	M2 - 88			1
	M3 - Sr / strontium	answer csq on		1
		correctly calculated		
		closest to calculated		
	Mark csq throughout part (a)	$A_{\rm r}$), but <u>must</u> be a		

Question	Answer	А	Reject	Marks
Number				
5 (b)	Any two from:			2
	M1 - gas was lost between adding acid and replacing bung			
	M2 - bung does not fit/there are leaks in the apparatus			
	M3 - some gas dissolved/reacted in the water			
	M4 - the carbonate was impure			
	M5 - the temperature (of the gas) was <u>lower</u> than room temperature/25°C			
			Total	10

Question number	Answer	Accept	Reject	Marks
6 (a)	(15.0 ÷1000) × 0.0010			1
	$= 1.5(0) \times 10^{-5}$	1.5 x 10 ⁻² for 1 mark		1
(b)	answer to (a)			1
(c)	<u>answer to (b) x 1000</u>			1
	25.0	answer to (b) ÷ 25 for		1
	correct evaluation (= 0.0006(0))	1 mark		
(d)	$M_{\rm r}$ of SO ₂ = 64			1
	answer to (c) x M_r of SO ₂ (= 0.038(4))			1
	Final answer must be to 2 or more sig fig			
(e)	The wine is drinkable Ignore any explanations	consequential on (d)		1
			Total	8

Question number	Answer	Notes	Marks
7 (a)	B A D C		1 1 1 1
(b)	Mixture Compound Mixture		1 1 1
		Total	7