Ionic Bonding Mark Scheme 2

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Торіс	Principles of Chemistry
Sub-Topic	Ionic Bonding
Booklet	Mark Scheme 2

Time Allo	wed:		38 minutes	5				
Score:			/31					
Percenta	ge:		/100					
Grade Bo	undaries:							
9	8	7	6	5	4	3	2	1
>90%	80%	70%	60%	50%	40%	30%	20%	10%

www.igexams.com

Q r	uestion number	Answer	Accept	Reject	Marks
1	(a)	(giant) ionic		any other answer	1
	(b)	M1 and M3 can be scored from labelled diagrams			
		sodium:			
		M1 – positive ions/cations/Na ⁺ <u>and</u> (delocalised/sea of) electrons IGNORE metal ions	Sodium / metal ions	atoms/molecu les	1
		M2 – (electrostatic) forces/attraction between positive		nuclei	
		(delocalised) electrons IGNORE references to metallic bonding		intermolecular forces	1
		sodium chloride:			1
		M3 – positive <u>and</u> negative ions/cations <u>and</u> anions / Na ⁺ <u>and</u> Cl ⁻ (ions)	oppositely charged ions	atoms/molecu les	1
				nuclei	L L
		M4 – <u>electrostatic</u> forces/attraction between (oppositely charged/positive	chlorine ions if stated as being negative	intermolecular forces	
		and negative) ions / cations and anions / Na ⁺ and Cl ⁻ IGNORE references to ionic bonding		reference to covalent loses M4	1
		comparison:			
		M5 - forces in Na are weak <u>er</u> (than forces in NaCl) can be awarded even if an incorrect description of the forces has been given.	less energy required to overcome forces in Na		
		[standalone]	bonds / lattice for forces		
			ORA		

Question number	Answer	Accept	Reject	Marks
1 (c)	M1 - $n(Na) = \frac{0.138}{23}$ or 0.006			1
	M2 - $n(H_2) = \frac{1}{2} \times M1$ or 0.003			1
	M3 - vol. H ₂ = 24 000 x M2 or 72 (cm ³)	0.072 <u>dm³</u>		1
	[Mark consequentially. $n(Na)$ and $n(H_2)$ need not be evaluated.]			
	correct final answer on its own without working scores 3			

www.igexams.com

Question number	Answer	Accept	Reject	Mar ks
1 (d) (i	M1 - (add dilute) <u>nitric</u> acid	addition of silver nitrate before nitric acid for both M1 and M2		1
	M2 - (add aqueous) silver nitrate	correct formulae throughout		1
	M3 - white precipitate / solid / suspension			1
(ii	M3 dependent on M2			
	Reason – it fizzed / a gas was evolved OR sodium hydroxide would not fizz /	sodium hydroxide is soluble		1
	produce a gas IGNORE incorrect identification of gas			1
	X = sodium carbonate / sodium hydrogencarbonate			
(e)	M1 - 8 electrons around Na	any combination of dots and crosses 0 electrons		1
	M2 - 8 electrons around Cl. IGNORE inner shells even if incorrect IGNORE starting diagrams showing atoms either with or without arrow to show movement of electron			1
	M3 - correct charge on <u>both</u> Na and Cl [standalone]			1
(f)	M1 - potassium is more reactive than sodium	reactivity increases down Group 1 ORA		1
	M2 - (but) bromine is less reactive than chlorine	reactivity decreases down Group 7 ORA	-ide endings	1
			Total	19

Question number	Answer	Notes	Marks
2 (a)		Ignore name and formula of compound	1
(i)	Na / sodium / Mg / magnesium	Accept aluminium If both name and formula	
(ii)	Si / silicon / P / phosphorus / S / sulfur / Cl / chlorine	given both must be correct	1
		If both name and formula given both must be correct	

(b) (i)		Allow electrons on brackets	3
	M1 correct electronic configuration for	Allow any combination of dots and crosses	
	magnesium ion and correct charge on ion	Allow 0 or 8 electrons in	
	M2 correct electronic configuration for both chloride ions	outer shell	
	M3 correct charges on both chloride ions		
(ii)	M1 electrostatic attraction/forces between ions	M3 indep	2
	M2 of opposite charge		
		accept positive	

(iii)	 M1 attraction (between ions) is strong M2 lots of ions (in structure) / giant structure / lattice / lots of/many bonds M3 (therefore) lot of (thermal/heat) energy required to overcome attraction / to break down the lattice 	and negative ions accept cations and anions M2 dep on M1 Accept attraction/forc es between oppositely charged ions for 1 mark only Reject references to atoms/molecul es/IMF for M1 and M2	3
		Accept strong (ionic) bonding/strong (ionic) bonds	

	Accept lot of (thermal/heat) energy required to break (ionic) bonds	
	If any reference to attraction between atoms/molecul es/electrons scores 0/3 If any reference to covalent bonding/covale nt structure/IMF scores 0/3	
(c)	Correct answer with or without working scores 2 marks	2

M1 mol Al = 20/3 (= 6.67)		
M2 mass Al = (answer to M1 x 27) = 180 (g) OR M1 3 faradays give 1 mol OR 27 g / 30 faradays give 10 mol OR 270 g M2 20 faradays gives 180 (g)	M2 CQ on M1 eg 540 scores 1 mark 6.67 gives 180(.09) scores 2 marks 6.7 gives 180.9 = 181 scores 2 marks 6.66 gives 179.82 scores M2 only Accept any number of sig fig except 1	