Covalent Bonding Mark Scheme 1

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1C)
Торіс	Principles of Chemistry
Sub-Topic	Covalent Bonding
Booklet	Mark Scheme 1

Time Allowed:			76 minutes	5				
Score:			/63					
Percentage:			/100					
Grade Bo	undaries:							
9	8	7	6	5	4	3	2	1
>90%	80%	70%	60%	50%	40%	30%	20%	10%

www.igexams.com

	Question number		Answer	Accept	Reject	Marks
1	(a)		covalent			1
	(b)	(i)	M1 – giant covalent / giant structure/lattice/network	macromolecular giant molecular	Max 1 if bonding stated to be intermolecular/ionic/metallic	1
			bonds/many (covalent) bonds/many (covalent)			
			M3 – lot of (thermal/heat) energy required			1
			M4 – to <u>break</u> bonds			1
		(ii)) M1 –intermolecular forces(of attraction) i / forces (of attraction) between molecules	intermolecular bonds in place of	any indication that covalent/ionic/metallic bonds	1
			M2 – are weak / little (thermal/heat) energy	intermolecular forces	are broken scores 0	1
			M2 DEP on M1			
			Weak bonds on its own = 0			
	(c)		theory B AND since there are no/fewer gas	fewer gas molecules		1
			OR	at high altitude/less		
			there is no/less gas in space	geeensgeeensee		
			OR .	air/specified gas in		
			space is a vacuum	place of gas		
				ORA		
1						

(d)	high temperature AND since (forward) reaction is		1
	endothermic/absorbs heat		
	IGNORE references to le Chatelier's principle		

(Total marks for Question 1 = 9 marks)

Question number		Answer	Notes	Marks
2	а	4 electrons shared between 2 (carbon) atoms	Ignore inner electrons even if wrong Ignore number of hydrogen atoms	1
2 a		4 electron pairs between 2C and 4H atoms	Accept all permutations of dots and crosses Ignore intersecting circles Accept H atoms at all angles At least one C or one H atom must be labelled – max 1 if not Max 1 if more than 2 C atoms Max 1 if wrong number of electrons in outer shell of any atom	1

Question number	Answer	Notes	Marks
2 b i	setting out correct division of each % by <i>A</i> _r OR 3.2, 9.7 and 3.2 division by smallest /ratio of 1 : 3 : 1	Award 0/3 if division by any atomic numbers / wrong way up / multiplication used Do not penalise roundings and minor misreads of % values, eg 38 or 39 for carbon If molecular masses used for H and/or O, no M1, but can award M2 and M3 but no CQ in ii Using 2 and 32 gives C_2H_3O Using 1 and 32 gives C_2H_6O Using 2 and 16 gives $C_2H_3O_2$ Working required for these answers M2 subsumes M1	1
	CH ₃ O	Accept elements in any order Award 3 for correct final answer with no working No ECF from M2	1
		Accept use of 62 from ii, i.e. 62 × 0.387 = 24 etc scores M1 ratio scores M2, answer scores M3	
ii	C ₂ H ₆ O ₂	Accept elements in any order No other answer acceptable	1
			0

Qu	lestion umber	Answer	Notes	Marks
3	а	covalent	Ignore references to polar bonding and electron sharing	1
			Accept bonds for forces for both M1 and M2 Reject atoms for both M1 and M2	
	b	M1 weak forces (of attraction) between molecules / weak intermolecular forces	Accept particles for molecules Accept correctly named IMF eg van der Waals'	
		M2 (therefore) little (thermal/heat) <u>energy</u> required to overcome the forces / separate the	Ignore more easily separated / easier to break	2
		molecules	if any reference to/implication of breaking covalent or ionic bonds scores 0/2	
			M1 and M2 indep	
	С	M1 (strong) attraction between bonding/shared pair of electrons		
		M2 (and) nuclei of (both atoms)	Do not award M2 if reference to only one nucleus	
		OR		2
		M1 bonding/shared pair of electronsM2 (strongly) attracted to nuclei (of both atoms)		
			Do not award M2 if reference to only one nucleus	

d	H×		M1 for 2 electrons shared between one H and one Cl M2 rest of molecule fully correct M2 DEP on M1 Accept any combination of dots and crosses Ignore inner shells of electrons in chlorine if overlapping touching/circles are used both electrons must be within the overlapping/touching area symbols do not need to be shown if overlapping touching /circles are used	2
e	M1 M2 M3	<pre>(effervescence) due to hydrogen (gas) solution A is acidic / contains H⁺ / contains hydrochloric acid solution B is not acidic / does not contain H⁺ / does not contain hydrochloric acid</pre>	Accept hydrogen chloride/HCl does not ionise/ dissociate	
			If only reference to HCl ionises/dissociates allow max one mark for M2 and M3, ie reference to either H ⁺ or acid(ic) needed to score both marks Ignore the bonds between H and Cl are not broken (when HCl dissolved) in methylbenzene Do not award M3 if any reference to methylbenzene reacting or dissociating	3

Question number	Answer	Notes	Marks
4 (a) (i)	M1 – (covalent) bonds have to be broken	any mention of ions / metallic bonding / molecules / intermolecular forces scores 0/2	1
	M2 – large amount of energy required/ bonds are strong	Accept large number of bonds to be broken Accept forces (of attraction) between <u>atoms</u> in place of bonds	1
(ii)	the (covalent) bonding in silicon dioxide is stronger (than the (ionic) bonding in sodium chloride)	Accept the covalent bonds (in silicon dioxide) are stronger than the ionic bonds (in sodium chloride) Accept more energy is required to break the (covalent) bonds in silicon dioxide (than is required to break the (ionic) bonds in sodium chloride) Accept forces (of attraction) between <u>atoms</u> in place of bonds	1
(b)	ions flow/move (to the electrodes)	Accept ions are mobile/can move reject electrons	1
(c)	weak forces (of attraction) between <u>molecules</u> / weak <u>intermolecular</u> forces (of attraction) / little energy is required to separate <u>molecules</u>	Accept boiling point is below room temperature reject any mention of covalent bonds broken	1

Question number	Answer	Accept	Reject	Marks
5 (a) (i)	M1 – divide all the masses by respective A_r		division by atomic number/division upside down for all	1
	M2 – to give 0.02 : 0.02 : 0.04		marks	1
	M3 – (mole) ratio is 1 : 1 : 2 Correct ratio or empirical formula with no working scores 0/3			1
(ii)	$M1 - 204 \div 102 = 2$ OR 102 x 2 = 204	(2 x 12) + (2 x 19) + (4 x 35.5) = 204		1
	$M2 - C_2F_2CI_4$ Correct answer with no working scores 2 marks	symbols in any order	FI for F	1
(b)	÷Ë: •× :CI×C•C: ו :F:	FI for F		2
	 M1 – all four bonding pairs correct M2 – rest of diagram correct M2 dep on M1 	any combination of dots and crosses		

IGNORE inner shell electrons even if		
incorrect		
Award 1 mark for similar molecules,		
eg CCl ₄ and CF ₄		

(Total marks for Question 5 = 7 marks)

Question number		tion ber	Answer	Notes	Marks
6	а	i	gains oxygen	Accept increase in oxidation number/state Ignore reference to loss of electrons	1
		ii	$SO_2 \ + \ H_2O \ \rightarrow \ H_2SO_3$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1
	b	i	covalent	Accept sharing electrons Reject sharing 1 electron Reject references to ions Ignore intermolecular forces Ignore simple Reject giant	1
		ii	intermolecular forces (of attraction) / forces (of attraction) between molecules	Accept intermolecular bonds	1
			weak / need little (thermal/heat) energy to	Accept easily overcome	1
				M2 DEP on M1 at least partially correct If only answer is weak bonds, then 0/2 If any reference to breaking covalent /ionic / metallic bonds, then 0/2	
		iii	Mo ₂ O ₆		1

Question number		tion ber	Answer	Notes	Marks
9	С	i	(giant structure of) positive ions	Accept cations but not just ions Reject references to negative ions and molecules	1
			(surrounded by) delocalised electrons	Accept sea of electrons Mark independently	1
		ii	(delocalised / sea of) electrons	Ignore free electrons Ignore references to carrying	1
			move / flow (through structure) / are mobile (when voltage/potential difference applied)	M2 DEP on M1	1
				No penalty for references to molybdenum atoms or ions / nuclei / protons, but any mention of these moving = 0/2	
			iii layers/sheets/planes/rows AND (positive) ions/atoms/particles slide (over each other)	If any reference to molecules/protons/electrons/nuclei, then 0/2	1
				Allow slip/flow/shift/move/OWTTE in place of slide M2 DEP on mention of either layers etc OR ions etc	1

(Total for Question 6 = 12 marks)

Question number			Answer	Notes	Marks	
7	а	i	M1	H—O—H with both bonds represented by 2 shared electrons	Accept 2 dots, 2 crosses or 1 of each Atoms do not have to be labelled with H or O If wrongly labelled, only M1 can be awarded	1
			M2	8 electrons in outer shell of O AND 2 electrons in outer shell of both H	Ignore inner shell of O Reject if H has 2 shells M2 dependent on M1	1
		ii	M1	(strong electrostatic) attraction between bonding/shared pair of electrons	Must refer to pair or two electrons	1
			M2	and nuclei (of hydrogen and oxygen)	Accept word nucleus instead of nuclei if clear reference to 2 atoms 0/2 if any mention of ions / electron transfer M2 dependent on mention of both attraction and electrons in M1	1

Question number			Answer	Notes	Marks	
7	b	i	M1	idea of electron transfer / loss and gain of electrons		1
			M2 M3	direction of transfer, eg sodium to oxygen / sodium loses and oxygen gains correct number of electrons involved, eg (each)	Ignore charges on ions	1
				sodium loses 1 and oxygen gains 2	Ignore covalent O/3 if any mention of electron sharing All marks may be scored on diagrams or by reference to electronic configurations Max 2 if molecules mentioned	
		ii	M1	(sodium) loses electron(s)	Ignore oxygen gains electrons	1

Question number		Answer	Notes	Marks
7 c	M 1	attractions between water molecules are weak(er) / easily overcome / need little energy to break	Allow (named) intermolecular forces in place of attractions	1
	M 2	attractions between (sodium and oxide) ions are strong(er) / ionic bonds are strong /need a lot of energy to break	Do not award M2 if any mention of intermolecular forces / metallic bonding Any implication of <u>breaking</u> covalent bonds = 0/2	1

Question number			Answer	Notes	Marks	
7	d	i	M1 M2 M3	s I aq	All three correct = 2 marks Two correct = 1 mark One/none correct = 0 marks Do not award M1 for g or if not possible to be sure that it is s and not g Do not award marks for abbreviations such as sol / liq	2
		ii	M1 M2	blue / purple OH⁻ / hydroxide	Allow indigo or violet M1 and M2 independent	1 1

Total 14 marks