Covalent Bonding
 Mark Scheme 1

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1C)
Topic	Principles of Chemistry
Sub-Topic	Covalent Bonding
Booklet	Mark Scheme 1

Time Allowed:	$\mathbf{7 6}$ minutes
Score:	$/ 63$
Percentage:	$/ 100$

Grade Boundaries:

| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $>90 \%$ | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% |

www.igexams.com

Question number	Answer	Accept	Reject	Marks
1 (a)	covalent			1
(b) (i) (ii)	M1 - giant covalent / giant structure/lattice/network M2 - strong (covalent) bonds/many (covalent) bonds M3 - lot of (thermal/heat) energy required M4 - to break bonds M1 - intermolecular forces(of attraction) / forces (of attraction) between molecules M2 - are weak / little (thermal/heat) energy required (to overcome the forces) M2 DEP on M1 Weak bonds on its own $=0$	macromolecular giant molecular intermolecular bonds in place of intermolecular forces	Max 1 if bonding stated to be intermolecular/ionic/metallic any indication that covalent/ionic/metallic bonds are broken scores 0	1 1 1 1 1 1
(c)	theory B AND since there are no/fewer gas molecules in space OR there is no/less gas in space OR space is a vacuum	fewer gas molecules at high altitude/less gas at high altitude air/specified gas in place of gas ORA		1

| (d) | high temperature AND since (forward) reaction is
 endothermic/absorbs heat
 IGNORE references to le Chatelier's principle | | 1 |
| :---: | :--- | :--- | :--- | :--- |

Question number	Answer	Notes	Marks
2 a	4 electrons shared between 2 (carbon) atoms	Ignore inner electrons even if wrong Ignore number of hydrogen atoms	1
4 electron pairs between 2C and 4H atoms	Accept all permutations of dots and crosses Ignore intersecting circles Accept H atoms at all angles At least one C or one H atom must be labelled - max 1 if not Max 1 if more than 2 C atoms Max 1 if wrong number of electrons in outer shell of any atom	1	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 2 b i \& \begin{tabular}{l}
setting out correct division of each \% by \(\mathrm{A}_{\mathrm{r}}\) \\
OR \\
3.2, 9.7 and 3.2 \\
division by smallest /ratio of 1:3:1
\end{tabular} \& \begin{tabular}{l}
Award \(0 / 3\) if division by any atomic numbers / wrong way up / multiplication used Do not penalise roundings and minor misreads of \% values, eg 38 or 39 for carbon If molecular masses used for H and/or O , no M1, but can award M2 and M3 but no CQ in ii \\
Using 2 and 32 gives \(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\) \\
Using 1 and 32 gives \(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\) \\
Using 2 and 16 gives \(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) \\
Working required for these answers M2 subsumes M1
\end{tabular} \& 1

1

\hline \& $\mathrm{CH}_{3} \mathrm{O}$ \& Accept elements in any order Award 3 for correct final answer with no working No ECF from M2 \& 1

\hline \& \& Accept use of 62 from ii, i.e. $62 \times 0.387=24$ etc scores M1 ratio scores M2, answer scores M3 \&

\hline ii \& $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ \& Accept elements in any order No other answer acceptable \& 1

\hline \& \& Total \& 6

\hline
\end{tabular}

Question number	Answer	Notes	Marks
3 a	covalent	Ignore references to polar bonding and electron sharing	1
b	M1 weak forces (of attraction) between molecules / weak intermolecular forces M2 (therefore) little (thermal/heat) energy required to overcome the forces / separate the molecules	Accept bonds for forces for both M1 and M2 Reject atoms for both M1 and M2 Accept particles for molecules Accept correctly named IMF eg van der Waals' Ignore more easily separated / easier to break if any reference to/implication of breaking covalent or ionic bonds scores 0/2 M1 and M2 indep	2
c	M1 (strong) attraction between bonding/shared pair of electrons M2 (and) nuclei of (both atoms) OR M1 bonding/shared pair of electrons M2 (strongly) attracted to nuclei (of both atoms)	Do not award M2 if reference to only one nucleus Do not award M2 if reference to only one nucleus	2

d	$\mathrm{H} \times \stackrel{\bullet}{\mathrm{Cl}}:$	M1 for 2 electrons shared between one H and one Cl M2 rest of molecule fully correct M2 DEP on M1 Accept any combination of dots and crosses Ignore inner shells of electrons in chlorine if overlapping touching/circles are used both electrons must be within the overlapping/touching area symbols do not need to be shown if overlapping touching /circles are used	2
e	M1 (effervescence) due to hydrogen (gas) M2 solution A is acidic / contains H^{+} / contains hydrochloric acid M3 solution B is not acidic / does not contain H^{+} / does not contain hydrochloric acid	Accept hydrogen chloride/ HCl does not ionise/ dissociate If only reference to HCl ionises/dissociates allow max one mark for M2 and M3, ie reference to either H^{+}or acid(ic) needed to score both marks Ignore the bonds between H and Cl are not broken (when HCl dissolved) in methylbenzene Do not award M3 if any reference to methylbenzene reacting or dissociating	3

Question number	Answer	Notes	Marks
4 (a) (i)	M1 - (covalent) bonds have to be broken	any mention of ions / metallic bonding / molecules /intermolecular forces scores 0/2 M2 - large amount of energy required / bonds are strong	Accept large number of bonds to be broken Accept forces (of attraction) between atoms in place of bonds
(ii)	the (covalent) bonding in silicon dioxide is stronger (than the (ionic) bonding in sodium chloride)	Accept the covalent bonds (in silicon dioxide) are stronger than the ionic bonds (in sodium chloride) Accept more energy is required to break the (covalent) bonds in silicon dioxide (than is required to break the (ionic) bonds in sodium chloride) Accept forces (of attraction) between atoms in place of bonds	1

Question number	Answer	Accept	Reject	Marks
5 (a) (i) (ii)	M1 - divide all the masses by respective A_{r} M2 - to give 0.02: 0.02: 0.04 M3 - (mole) ratio is 1:1:2 Correct ratio or empirical formula with no working scores $0 / 3$ M1-204 $\div 102=2$ OR $102 \times 2=204$ $\mathbf{M} \mathbf{2}-\mathrm{C}_{2} \mathrm{~F}_{2} \mathrm{Cl}_{4}$ Correct answer with no working scores 2 marks	$\begin{aligned} & (2 \times 12)+(2 \times 19)+(4 \times 35.5)= \\ & 204 \end{aligned}$ symbols in any order	division by atomic number/division upside down for all marks Fl for F	1 1 1 1 1
(b)	M1 - all four bonding pairs correct M2 - rest of diagram correct M2 dep on M1	FI for F any combination of dots and crosses		2

\(\left.\begin{array}{|l|l|l|l|l|}\hline \& \begin{array}{l}IGNORE inner shell electrons even if

incorrect

Award 1 mark for similar molecules,

eg CCI and CF\end{array} 4\end{array}\right) .\)| |
| :--- |

(Total marks for Question $5=7$ marks)

(Total for Question $6=12$ marks)

Question number				Answer	Notes	Marks
7	b	i	M1	idea of electron transfer / loss and gain of electrons		1
			$\begin{aligned} & \text { M2 } \\ & \text { M3 } \end{aligned}$	direction of transfer, eg sodium to oxygen / sodium loses and oxygen gains correct number of electrons involved, eg (each) sodium loses 1 and oxygen gains 2	Ignore charges on ions I gnore covalent $0 / 3$ if any mention of electron sharing All marks may be scored on diagrams or by reference to electronic configurations Max 2 if molecules mentioned	1 1
		ii	M1	(sodium) loses electron(s)	Ignore oxygen gains electrons	1

| Question
 number | | Answer | Notes | Marks |
| :---: | :---: | :---: | :--- | :--- | :---: |
| 7 | c | M
 1 attractions between water molecules are
 weak(er) / easily overcome / need little energy
 to break
 attractions between (sodium and oxide) ions are Allow (named) intermolecular forces
 in place of attractions
 strong(er) / ionic bonds are strong /need a lot of
 energy to break | Do not award M2 if any mention of
 intermolecular forces / metallic
 bonding
 Any implication of breaking covalent
 bonds $=0 / 2$ | 1 |

Total 14 marks

