Electrolysis

Mark Scheme 3

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Topic	Principles of Chemistry
Sub-Topic	Electrolysis
Booklet	Mark Scheme 3

Time Allowed: 70 minutes

Score: /58

Percentage: /100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>90%	80%	70%	60%	50%	40%	30%	20%	10%

•			
Question number	Answer	Notes	Marks
1 (a)		Ignore name and formula of compound	1
(i)	Na / sodium / Mg / magnesium	Accept aluminium If both name and formula	
(ii)	Si / silicon / P / phosphorus / S / sulfur / Cl / chlorine	given both must be correct	1
		If both name and formula given both must be correct	

(b) (i)	[Mg] ²⁺ [:Cix] ⁻ [*Ci:] ⁻	Allow electrons on brackets	3
		Allow any combination of dots and	
	M1 correct electronic configuration for magnesium ion and correct charge on	crosses	
	ion	Allow 0 or 8 electrons in	
	M2 correct electronic configuration for both chloride ions	outer shell	
	M3 correct charges on both chloride ions		
, <u>,</u>		M3 indep	2
(ii)	M1 electrostatic attraction/forces between ions		2
	M2 of opposite charge		
		accept positive	

(iii)	 M1 attraction (between ions) is strong M2 lots of ions (in structure) / giant structure / lattice / lots of/many bonds M3 (therefore) lot of (thermal/heat) energy required to overcome attraction / to break down the lattice 	and negative ions accept cations and anions M2 dep on M1 Accept attraction/forc es between oppositely charged ions for 1 mark only Reject references to atoms/molecul es/IMF for M1 and M2 Accept strong (ionic) bonding/strong (ionic) bonds	3
-------	--	---	---

	Accept lot of (thermal/heat) energy required to break (ionic) bonds If any reference to attraction between atoms/molecul es/electrons scores 0/3 If any reference to covalent bonding/covale nt structure/IMF scores 0/3	
(c)	Correct answer with or without working scores 2 marks	2

M1 mol Al = 20/3 (= 6.67)		
M2 mass Al = (answer to M1 x 27) = 180 (g) OR M1 3 faradays give 1 mol OR 27 g / 30 faradays give 10 mol OR 270 g M2 20 faradays gives 180 (g)	M2 CQ on M1 eg 540 scores 1 mark 6.67 gives 180(.09) scores 2 marks 6.7 gives 180.9 = 181 scores 2 marks 6.66 gives 179.82 scores M2 only Accept any number of sig fig except 1	

Question number	Answer	Notes	Marks
2 a	potassium chloride solution + + + + + + + + + + + + + + + + + + +	 M1 both bungs inserted AND electrodes connected to battery M2 both tubes inverted over electrodes M3 solution placed in the voltameter and labelled as potassium chloride / KCl(aq) For M3, ignore all three liquid levels, except that the level in the voltameter must be above the bottoms of both tubes if present 	3
b	Polarity Equation -(ve) $(2H_2O + 2e^- \rightarrow H_2 + 2OH^-)$ +(ve) $2CI^- \rightarrow CI_2 + 2e^{(-)}$	M1 for $2Cl^- \rightarrow Cl_2 + 2e^{(-)}$ ACCEPT $2Cl^ 2e^{(-)} \rightarrow Cl_2$ M2 for $-(ve)$ in top row AND $+(ve)$ in bottom row ACCEPT negative and positive IGNORE cathode and anode	2
С	burns with a pop / squeak OR use burning/lit spill / use flame to see if pop/squeak	Must be reference to test and result Reference to spill/match with no indication of flame is not enough ACCEPT splint for spill REJECT reference to glowing spill/splint Ignore flame extinguished 'Squeaky pop test' alone is not sufficient	1

	Question number		Answer	Notes	Marks
3	а		too reactive / very reactive	Accept words with equivalent meaning	1
			OR	eg highly	
			high in the reactivity series		
	b i		B (stage 2)		1
		ii	calcium chloride / CaCl ₂	If both name and formula given, mark name only	1
		iii	(they / the ions) are mobile	Accept free to move Accept move to electrodes (allow even if incorrect electrodes) Accept ions break free from lattice/crystal Not just free Allow they/ions are delocalised Ignore references to conduction	1
		iv	$2CI^- \rightarrow CI_2 + 2e^{(-)}$	Accept $2CI^ 2e^{(-)} \rightarrow CI_2$	1

Question number			Answer	Notes	Marks	
3	С	i	M1	Correct calculation of M_r (MgCl ₂)	Sample calculation:	2
			M2	M1 x 2	M1 = 95	
					M2 = 190 (kg)	
					Accept 190 000 g	
					M2 CQ on M1 when M1 is a genuine attempt to calculate M_r (MgCl ₂)	
					Correct answer with no working scores 2	
	С		Aw	ard 2 marks for 4000		
			Aw	ard 1 mark if one error	2000 (wrong ratio for Mg and electrons)	2
					4 (working in grams instead of kilograms)	

	Question number			Answer	Notes	Marks
3	d		M1	Mix magnesium oxide and sulfuric acid (and heat)		
			M2	Use excess MgO		
			М3	Filter (before heating to remove some water)		
			M4	<u>Heat</u> (the solution) to remove <u>some</u> water / for a short period of time	If heated to dryness, no M4 or M5	5
			M5	Leave to crystallise	Allow place in a <u>warm</u> oven (to evaporate the excess water) to form crystals	

Question number	Answer	Notes	Marks
4 a i	correct statement about connection between number of electrons and moles/molecules/amounts (of both gases) OR reference to number of moles/molecules being	eg same number of electrons give same numbers of moles eg equal moles of gases have equal volumes	1
ii	equal (in both equations) (some/chlorine/it) is soluble / dissolves (in water / in the solution) OR (some/chlorine/it) reacts with water	/ volumes are proportional to numbers of moles Accept (some) oxygen also collected Reject chlorine reacts with graphite Ignore chlorine gas escapes Reject reacts with sodium chloride / reacts with sodium hydroxide	1
iii	M1 (solution) alkaline / pH greater than 7 M2 (because) hydroxide ions / OH- (formed)	Mark M1 and M2 independently Ignore basic Accept any value above 7 up to 14 Accept sodium hydroxide formed	2
b	M1 (result of litmus test) bleaches / goes white M2 (result of KI test) brown (solution) / black precipitate or equivalent	Ignore red as intermediate colour Accept decolourises / colourless Accept yellow and orange in place of brown Accept grey in place of black Ignore shades such as pale / dark Reject red / red-brown / purple / blue-black	2

www.igexams.com

Question number	Answer	Notes	Marks		
4 c i	to sterilise / disinfect (the water) OR to make it safe to drink	Accept kill bacteria / microbes / pathogens / microorganisms / (harmful) organisms / germs / viruses Ignore references to cleaning / purifying / bleaching / changing pH	1		
ii	$H_2 + Cl_2 \rightarrow 2HCl$	Ignore state symbols	1		
iii	dissolve in / add to water	Accept mixing with water / bubbling through water / react with water / make aqueous Ignore adding to liquid	1		
	Total 9				

Question number			Answer	Notes	Marks
5	ā a		decomposition / breakdown / breakup / splitting / chemical change by electricity / (electric) current / (flow of) electrons	Ignore specific examples that do not include key words (eg obtaining aluminium from its ore) Ignore separation / movement of ions	2
				Mark independently	
	b		A = chlorine / Cl ₂ B = hydrogen / H ₂ C = sodium hydroxide / NaOH	Ignore Cl Ignore H Ignore references to sodium chloride If both name and formula given, both must be correct, but ignore Cl and H Award 1 mark for chlorine and hydrogen the wrong way round	3

Question number			Answer	Notes	Marks
5	С	i	so that ions are mobile/can flow/free to move (in liquid) OR ions not mobile / cannot flow/ not free to move in solid	Accept Na ⁺ / Cl ⁻ in place of ions Ignore references to charged species and particles Reject references to moving electrons Reject no ions in solid Reference to solid can be implied (eg if not molten)	1
		ii	$2CI^- \rightarrow CI_2 + 2e^{(-)}$	M1 for Cl $^-$ on left and Cl $_2$ on right M2 for balancing, DEP on M1 correct Accept – $2e^{(-)}$ on LHS If neither M1 nor M2 awarded, then award 1 mark for Cl $^- \rightarrow$ Cl $^- \rightarrow$ Cl $^- \rightarrow$ 2Cl $^- \rightarrow$ 2	2

(Total for Question 5 = 8 marks)

www.igexams.com

	Question number		Answer				Accept	Reject	Marks
6	(a)		Solution	Negative electrode	Positive electrode	Substance left			1
			silver sulfate potassium nitrate	silver	oxygen	potassium nitrate	correct formulae throughout	O for oxygen	2
	(b)	(i)	to increase its (electrical) conductivity / to make it a (better) (electrical) conductor / to lower its (electrical) resistance IGNORE references to carrying current / charge / adds hydrogen ions				carbon / graphite copper/ silver / gold / titanium		1
		(ii)					to increase the concentration/numb er of ions		1
	(c)	(i)	Moles/amount of hydrogen (produced) = 2 x moles/amount of oxygen (produced)				number of <u>molecules</u> of hydrogen (produced) is twice that of oxygen	explanations based on atoms	1
	(ii) (some of the) oxygen dissolves in water/acid					(some of the) oxygen reacts with the (carbon) electrode/to form CO ₂ (which then dissolves)	oxygen reacts with water/(sulfuric) acid	1	
	(d) $\frac{482500}{96500}$ or 5					1			
	M2 - $n(H_2) = \frac{1}{2} \times M1$ or 2.5 Final answer on its own without working scores 2						Incorrect units	_	
	Tillal aliswer on its own without working scores 2					Total	9		