Electrolysis
 Mark Scheme 3

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Topic	Principles of Chemistry
Sub-Topic	Electrolysis
Booklet	Mark Scheme 3

Time Allowed:		70 minutes					
Score:		/58					
Percentage:		/100					
Grade Boundaries:							
98	7	6	5	4	3	2	1
>90\% 80\%	70\%	60\%	50\%	40\%	30\%	20\%	10\%

Question number	Answer	Notes	Marks
1 (a)		Ignore name and formula of compound	1
(i)	Na / sodium / Mg / magnesium		1
		Accept aluminium If both name	
(ii)	Si / silicon / P / phosphorus / S / sulfur / $\mathrm{Cl} /$ chlorine	given both must be	
		If both name and formula given both must be correct	

(b) (i)	$[\mathrm{ma}]^{2}[: \ddot{\mathrm{ol},]}][\mathrm{c}[\mathrm{col}:]$ M1 correct electronic configuration for magnesium ion and correct charge on ion M2 correct electronic configuration for both chloride ions M3 correct charges on both chloride ions	Allow electrons on brackets Allow any combination of dots and crosses Allow 0 or 8 electrons in outer shell	3
(ii)	M1 electrostatic attraction/forces between ions M2 of opposite charge	M3 indep	2
		accept positive	

$\left.\begin{array}{|c|l|l|l|}\hline \text { (iii) } & & \begin{array}{l}\text { and negative } \\ \text { ions } \\ \text { accept cations } \\ \text { and anions } \\ \text { M2 dep on M1 } \\ \text { Accept } \\ \text { attraction/forc } \\ \text { es between } \\ \text { oppositely } \\ \text { charged ions } \\ \text { for 1 mark } \\ \text { only } \\ \text { Reject }\end{array} & 3 \\ \text { references to } \\ \text { atoms/molecul } \\ \text { es/IMF for M1 } \\ \text { and M2 }\end{array}\right\}$

		Accept lot of (thermal/heat) energy required to break (ionic) bonds If any reference to attraction between atoms/molecul es/electrons scores 0/3 If any reference to covalent bonding/covale nt structure/IMF scores 0/3	
(c)		Correct answer with or without working scores 2 marks	2

Question number			Answer	Notes	Marks
3	a		too reactive / very reactive OR high in the reactivity series	Accept words with equivalent meaning eg highly	1
	b	i	B (stage 2)		1
		ii	calcium chloride / CaCl_{2}	If both name and formula given, mark name only	1
		iii	(they / the ions) are mobile	Accept free to move Accept move to electrodes (allow even if incorrect electrodes) Accept ions break free from lattice/crystal Not just free Allow they/ions are delocalised Ignore references to conduction	1
		iv	$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$	Accept $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}$	1

Question number				Answer	Notes	Marks
3	c	i	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M2 } \end{array}$	Correct calculation of $\mathrm{Mr}_{\mathrm{r}}\left(\mathrm{MgCl}_{2}\right)$ M1 $\times 2$	Sample calculation: $\begin{aligned} & \text { M1 }=95 \\ & \text { M2 }=190(\mathrm{~kg}) \end{aligned}$ Accept 190000 g M2 CQ on M1 when M1 is a genuine attempt to calculate $\mathrm{M}_{\mathrm{r}}\left(\mathrm{MgCl}_{2}\right)$ Correct answer with no working scores	2
	c		Award 2 marks for 4000 Award 1 mark if one error		2000 (wrong ratio for Mg and electrons) 4 (working in grams instead of kilograms)	2

Question number				Answer	Notes	Marks
3	d		M1 M2 M3 M4 M5	Mix magnesium oxide and sulfuric acid (and heat) Use excess MgO Filter (before heating to remove some water) Heat (the solution) to remove some water / for a short period of time Leave to crystallise	If heated to dryness, no M4 or M5 Allow place in a warm oven (to evaporate the excess water) to form crystals	5

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \(\begin{array}{lll}4 \& \text { a } \& \text { i } \\ \& \& \\ \& \& \\ \& \& \\ \& \text { ii }\end{array}\) \& \begin{tabular}{l}
correct statement about connection between number of electrons and moles/molecules/amounts (of both gases) OR reference to number of moles/molecules being equal (in both equations) \\
(some/chlorine/it) is soluble / dissolves (in water / in the solution) \\
OR \\
(some/chlorine/it) reacts with water \\
M1 (solution) alkaline / pH greater than 7 \\
M2 (because) hydroxide ions / \(\mathrm{OH}^{-}\)(formed)
\end{tabular} \& \begin{tabular}{l}
eg same number of electrons give same numbers of moles \\
eg equal moles of gases have equal volumes / volumes are proportional to numbers of moles \\
Accept (some) oxygen also collected \\
Reject chlorine reacts with graphite \\
Ignore chlorine gas escapes \\
Reject reacts with sodium chloride \\
/ reacts with sodium hydroxide \\
Mark M1 and M2 independently \\
Ignore basic \\
Accept any value above 7 up to 14 \\
Accept sodium hydroxide formed
\end{tabular} \& 1

1
2

\hline b \& | M1 | (result of litmus test)
 bleaches / goes white |
| :--- | :--- |
| M2 | (result of KI test)
 brown (solution) / black precipitate or |
| equivalent | | \& | Ignore red as intermediate colour Accept decolourises / colourless |
| :--- |
| Accept yellow and orange in place of brown Accept grey in place of black |
| Ignore shades such as pale / dark Reject red / red-brown / purple / blue-black | \& 2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
4 c i	to sterilise / disinfect (the water) OR to make it safe to drink	Accept kill bacteria / microbes / pathogens / microorganisms / (harmful) organisms / germs lviruses Ignore references to cleaning / purifying / bleaching / changing pH ii	Ignore state symbols $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ iii
dissolve in / add to water	Accept mixing with water / bubbling through water /react with water / make aqueous Ignore adding to liquid	1	

Question number			Answer	Notes	Marks
5	a		decomposition / breakdown / breakup / splitting / chemical change by electricity / (electric) current / (flow of) electrons	Ignore specific examples that do not include key words (eg obtaining aluminium from its ore) Ignore separation / movement of ions Mark independently	2
	b		$\begin{aligned} & \mathrm{A}=\text { chlorine } / \mathrm{Cl}_{2} \\ & \mathrm{~B}=\text { hydrogen } / \mathrm{H}_{2} \\ & \mathrm{C}=\text { sodium hydroxide } / \mathrm{NaOH} \end{aligned}$	Ignore Cl Ignore H Ignore references to sodium chloride If both name and formula given, both must be correct, but ignore Cl and H Award 1 mark for chlorine and hydrogen the wrong way round	3

Question number			Answer	Notes	Marks
5	C	ii	so that ions are mobile/can flow/free to move (in liquid) OR ions not mobile / cannot flow/ not free to move in solid $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$	Accept $\mathrm{Na}^{+} / \mathrm{Cl}^{-}$in place of ions Ignore references to charged species and particles Reject references to moving electrons Reject no ions in solid Reference to solid can be implied (eg if not molten...) M 1 for Cl^{-}on left and Cl_{2} on right M2 for balancing, DEP on M1 correct Accept - $2 \mathrm{e}^{(-)}$on LHS If neither M1 nor M2 awarded, then award 1 mark for $\mathrm{Cl}^{-} \rightarrow \mathrm{Cl}+\mathrm{e}^{(-)}$ or $2 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Cl}+2 \mathrm{e}^{(-)}$	1 2

www.igexams.com

Question number	Answer				Accept	Reject	Marks
6 (a)	Solution	Negative electrode	Positive electrode	Substance left	correct formulae throughout	O for oxygen	1
	silver sulfate	silver					
	potassium nitrate		oxygen	potassium nitrate			2
(b) (i)	platinum				carbon / graphite copper/ silver / gold / titanium		1
	to increase its (electrical) conductivity / to make it a (better) (electrical) conductor / to lower its (electrical) resistance IGNORE references to carrying current / charge / adds hydrogen ions				to increase the concentration/numb er of ions		1
(c) (i)	Moles/amount of hydrogen (produced) $=2 x$ moles/amount of oxygen (produced)				number of molecules of hydrogen (produced) is twice that of oxygen	explanations based on atoms	1
	(some of the) oxygen dissolves in water/acid				(some of the) oxygen reacts with the (carbon) electrode/to form CO_{2} (which then dissolves)	oxygen reacts with water/(sulfuric) acid	1
(d)	M1 - number of faradays $=\frac{482500}{96500}$ or 5 M2 $-\mathrm{n}\left(\mathrm{H}_{2}\right)=1 / 2 \times$ M1 or 2.5 Final answer on its own without working scores 2					Incorrect units	1 1
						Total	9

