Group 7(Halogens) - Chlorine, Bromine, lodine

Mark Scheme 3

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Topic	Inorganic Chemistry
Sub-Topic	Group 7 (Halogens) - Chlorine, Bromine Iodine
Booklet	Mark Scheme 3

Time Allowed:	63 minutes
Score:	$/ 52$
Percentage:	$/ 100$
Grade Boundaries:	

9	8	7	6	5	4	3	2	1
$>90 \%$	80%	70%	60%	50%	40%	30%	20%	10%

Question number			Answer	Notes	Marks
1	a		B (red-brown liquid)		1
	b		$2 \quad 10$	Accept multiples and fractions	1
	c	i	a halogen/an element cannot displace itself OR no reaction / no displacement (would occur)	Accept a halogen does not react with its own (halide) ions Accept correct reference to a specific halogen/halide ion Accept nothing happens Reject any references to a halogen having the same reactivity as a halide (ion)	1
		ii	a halogen cannot displace a more reactive halogen OR a halogen cannot react with the (halide) ions of a more reactive halogen	Reject any references to a halogen having a different reactivity to a halide (ion) Accept correct reference to a specific halogen/halide ion	1
		iii	potassium bromide	Ignore any formula Reject any other species with corrected name	1

Question number				Answer	Notes	Marks
1		iv	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M2 } \end{array}$	$\begin{aligned} & \text { (correct products) } \mathrm{KCl} \text { AND } \mathrm{I}_{2} \\ & 22 \end{aligned}$	Accept in either order M2 DEP on M1	
	c	v		(both) reduction AND oxidation occur (in the same reaction)	Accept (both) gain AND loss of electrons occurs (in the same reaction) Accept (both) gain AND loss of oxygen occurs (in the same reaction) Accept (both) increase AND decrease of oxidation states/oxidation numbers (in the same reaction) Ignore incorrect species being oxidised and reduced / losing and gaining electrons	1

	vi	M1	(species) $\mathrm{I}^{-} /$iodide (ion)		1
		M2	(reason) loss of electron(s)	Accept increase in oxidation number OR oxidation number changes from -1 to 0 Ignore number of electrons lost M2 DEP on M1 correct, or near miss e.g. iodine	1
				Total 10 marks	

Question number	Answer			Notes	Marks
2 a				M1 (bromine) liquid / (I) M2 (iodine) black allow (dark) grey	2
	Halogen	Colour	Physical state		
	bromine		liquid		
	iodine	black			
b	$\begin{array}{lll} \bullet \bullet & \times x \\ : & \mathrm{Br} & \times \\ \bullet & \mathrm{P} \\ \bullet & & \times \bullet \\ & : & \mathrm{Br} \\ & & \bullet \end{array}$	\bullet Br : -•		M1 three bonding pairs of electrons correct M2 rest of electrons correct Accept any combination of dots and crosses Ignore circles	2
c	$\mathrm{PBr}_{3}+3$	$\rightarrow 3 \mathrm{HBr}$	PO_{3}	M1 all formulae correct M2 balanced M2 DEP on M1	2 6 marks

Question number	Answer	Accept	Reject	Marks
3	M1 - add (aqueous) chlorine to (aqueous) KBr M2 - (solution) turns orange M3 - add (aqueous) bromine to (aqueous) KI M4 - (solution) turns brown $\mathbf{M 5}-\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl}$ OR $\mathrm{Br}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KBr}$ Ignore state symbols	yellow / brown red-brown / orange correct ionic equations accept $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+$ 2 KCl if chlorine is added to potassium iodide	red yellow	5

Total 5 marks

Question number				Answer	Notes	Marks
4	a			bromine AND iodine	Accept symbols and formulae Do not accept names or formulae of ions	1
	b	i		hydrogen chloride	Ignore gas	1
				hydrochloric acid	Ignore aqueous / solution / dilute / concentrated	1
					Award 1 for both correct names in wrong places	
		ii	M1	white smoke/ solid/ cloud	Accept ring Reject precipitate Ignore powder / fumes	1
			MR	$\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$	Ignore state symbols	1
		iii	M1	white precipitate		1
			M2	aq s aq	Award 1 for s and 1 for both aq	2

Question number			Answer	Notes	Marks
4	c	i	hydrogen / H_{2}	Ignore H	1
		ii	becomes smaller / disappears	Accept dissolves Ignore references to bubbles	1
		iii	acidic / contains (hydrochloric) acid / hydrogen ions $/ \mathrm{H}^{+}$(ions)	Accept pH below 7 or any value below 7	1
		iv	not acidic / no (hydrochloric) acid (formed) / no hydrogen ions/ no H^{+}(ions) OR $\mathrm{HCl} /$ hydrogen chloride does not ionise / dissociate	Reject references to alkali(ne) or pH above 7 Ignore neutral Do not accept it/ hydrochloric acid in place of HCl	1
TOTAL					12

Question number	Answer	Accept	Reject	Marks
5 (a)	(giant) ionic I GNORE three-dimensional / lattice		any other answer	1
(b)	M1 and M3 can be scored from labelled diagrams sodium: M1 - positive ions/cations/ Na^{+}and (delocalised/sea of) electrons I GNORE metal ions M2 - (electrostatic) forces/attraction between positive ions/cations/ Na^{+}and (delocalised) electrons I GNORE references to metallic bonding sodium chloride: M3 - positive and negative ions/cations and anions / Na^{+}and Cl^{-} (ions) M4 - electrostatic forces/attraction between (oppositely charged/positive and negative) ions / cations and anions / Na^{+}and Cl^{-} I GNORE references to ionic bonding comparison: M5 - forces in Na are weaker (than forces in NaCl) can be awarded even if an incorrect description of the forces has been given. [standalone]	Sodium / metal ions oppositely charged ions chlorine ions if stated as being negative less energy required to overcome forces in Na bonds / lattice for forces ORA	atoms/molecu les nuclei intermolecular forces atoms/molecu les nuclei intermolecular forces reference to covalent loses M4	1 1 1 1 1 1 1

Question number	Answer	Accept	Reject	Marks
5 (c)	M1 $-\mathrm{n}(\mathrm{Na})=\frac{0.138}{23}$ or 0.006 M2 $-\mathrm{n}\left(\mathrm{H}_{2}\right)=1 / 2 \times$ M1 or 0.003 M3 - vol. $\mathrm{H}_{2}=24000 \times$ M2 or $72\left(\mathrm{~cm}^{3}\right)$ [Mark consequentially. $\mathrm{n}(\mathrm{Na})$ and $\mathrm{n}\left(\mathrm{H}_{2}\right)$ need not be evaluated.] correct final answer on its own without working scores 3	$0.072 \mathrm{dm}^{3}$		1
				1
				1

Question number	Answer	Accept	Reject	Mar ks
$5 \text { (d) (i) }$ (ii)	M1 - (add dilute) nitric acid M2 - (add aqueous) silver nitrate M3 - white precipitate / solid / suspension M3 dependent on M2 Reason - it fizzed / a gas was evolved OR sodium hydroxide would not fizz / produce a gas IGNORE incorrect identification of gas $\mathbf{X}=$ sodium carbonate $/$ sodium hydrogencarbonate	addition of silver nitrate before nitric acid for both M1 and M2 correct formulae throughout sodium hydroxide is soluble		1 1 1 1 1
(e)	M1 - 8 electrons around Na M2-8 electrons around Cl . I GNORE inner shells even if incorrect I GNORE starting diagrams showing atoms either with or without arrow to show movement of electron M3 - correct charge on both Na and Cl [standalone]	any combination of dots and crosses 0 electrons		1 1 1
(f)	M1 - potassium is more reactive than sodium M2 - (but) bromine is less reactive than chlorine	reactivity increases down Group 1 ORA reactivity decreases down Group 7 ORA	-ide endings	1 1
			Total	19

