Reactivity Series
 Mark Scheme

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1C)
Topic	Inorganic Chemistry
Sub-Topic	Reactivity Series
Booklet	Mark Scheme

Time Allowed:	23 minutes
Score:	/19
Percentage:	$/ 100$

Grade Boundaries:

9	8	7	6	5	4	3	2	1
$>90 \%$	80%	70%	60%	50%	40%	30%	20%	10%

Question number	Answer	Notes	Marks
1 (a)	copper	ignore symbol reject copper(II) / copper(II) ions / Cu^{2+}	1
(b)	zinc cannot displace itself	Accept zinc cannot react with zinc ions/zinc nitrate reactivity	1
(c)	aluminium zinc M copper M1 - aluminium at top and copper at bottom M2 - zinc above M	(award M2 irrespective of where zinc is placed in the list	

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(d) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
oxidation and reduction occur \\
OR \\
electron loss and electron gain occur \\
OR \\
oxidation number increase and decrease \\
M1 - \(\mathrm{Ag}^{+} /\)silver \(\underline{i o n(s) ~}\) \\
M2 - it gains electron/is reduced \\
OR \\
it takes electrons from \\
\(\mathrm{Mg} /\) magnesium (atoms) \\
OR \\
its oxidation number decreases \\
OR \\
it causes the oxidation number of Mg to \\
increase
\end{tabular} \& \begin{tabular}{l}
reject references to oxygen \\
Accept electron transfer \\
Ignore species involved \\
M2 DEP on M1 or near miss, e.g. Ag
\end{tabular} \& 1

1
1

\hline
\end{tabular}

Question number	Answer				Accept	Reject	Marks
2 (a)							11
	Name of barium salt	Formula of barium salt	Solubility in water	Poisonous			
	barium chloride	BaCl_{2}					
	barium nitrate						
	barium carbonate	BaCO_{3}					
	barium sulfate						
(b)	M1 (it forms) b M2 by reaction	um chloride/Ba with hydrochlori	2/a soluble (ba acid/stomach a	m) salt	by neutralisation word or chemical equation for 2 marks (equation can be unbalanced)	any suggestion that barium chloride is reacting	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c)	barium sulfate/B	SO_{4}					1

Question number	Answer	Accept	Reject	Marks
3 (d)	M1 barium sulfate is formed M2 which is not poisonous/not toxic/harmless IGNORE references to magnesium hydroxide not poisonous M2 dep on M1 M3 barium hydroxide + magnesium sulfate \rightarrow barium sulfate + magnesium hydroxide OR barium ions + sulfate ions \rightarrow barium sulfate	'products', provided shown correctly in word equation is insoluble $\begin{aligned} & \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{MgSO}_{4} \\ & \underset{\underset{\mathrm{BaSO}_{4}}{ }+}{\mathrm{Mg}(\mathrm{OH})_{2}} \end{aligned}$ OR $\begin{aligned} & \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \\ & \mathrm{BaSO}_{4} \end{aligned}$		1 1 1
(e) (i) (ii) (iii)	M1 water - (reacts) very/extremely quickly/more quickly than strontium/quickest I GNORE rapidly/vigorously M2 air - (reacts) very/extremely quickly/more quickly than strontium/quickest (without heating) I GNORE rapidly/vigorously in/under any one of the following: (paraffin/mineral) oil/petroleum (oil)/(liquid) paraffin I GNORE in an air tight container reactivity increases as atomic number increases	explosively/violently explosively/violently in a vacuum reactivity increases with atomic number/down the group OWTTE reverse argument		1 1 1 1

www.igexams.com

