Alkanes Mark Scheme 2

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1C)
Торіс	Organic Chemistry
Sub-Topic	Alkanes
Booklet	Mark Scheme 2

Time Allo	wed:		68 minutes	S				
Score:			/56					
Percenta	ge:		/100					
Grade Bo	undaries:							
9	8	7	6	5	4	3	2	1
>90%	80%	70%	60%	50%	40%	30%	20%	10%

Question number	Answer	Notes	Marks
1 (a) (i)	(saturated) – <u>all</u> (carbon to carbon) bonds are single / no (carbon to carbon) double bonds	accept no (carbon to carbon) multiple bonds ignore any references to hydrogen	1
(ii)	 M1 - (compounds/substances/molecules) containing hydrogen and carbon (atoms/elements) 	reject atoms/elements/ions/mixture in place of compounds reject compounds/substances/molecules in place of atoms/elements	1
	M2 - only	accept other terms with same meaning, e.g. solely, exclusively, just	1
		M2 DEP on mention of hydrogen and carbon / C and H and no other element	
(iii)	C (C ₅ H ₁₂)		1
(b) (i)	$C_8H_{18} \ + \ 12.5O_2 \ \rightarrow \ 8CO_2 \ + \ 9H_2O$		2
	 M1 – all formulae correct M2 – balanced using correct formulae 	accept multiples	
(ii)	carbon monoxide	If both name and formula given, mark name only accept correct formula	1

Question number	Answer	Notes	Marks
1 (c) (i)	(provides an alternative pathway of) lower activation energy	Accept (molecules adsorb onto catalyst and covalent) bonds weakened	1
(ii)	silica/silicon dioxide/alumina/aluminium oxide	accept correct formulae accept aluminosilicate(s) accept zeolite(s) ignore silica oxide and alumina oxide If both name and formula given, mark name only	1
(iii)	C ₂ H ₄	Accept structural or displayed formula	1
(iv)	ethene	accept ethylene	1

Question number	Answer	Accept	Reject	Marks
2 (a) (i)	A	Methane		1
(ii)	С	Ethene		1
(iii)	С	Ethene		1
(b)	M1 – (molecular) C_4H_{10}	H ₁₀ C ₄	CH ₃ CH ₂ CH ₂ CH ₃	1
	$M2 - (empirical) C_2H_5$	H ₅ C ₂		1
	ECF from molecular formula			
(c) (i)	M1 – (name) alkane(s)			1
	M2 – (general formula) C_nH_{2n+2}			1
(ii)	$H \xrightarrow{H} H \xrightarrow{H} H$ $H \xrightarrow{H} H$ $H \xrightarrow{H} H$ $H \xrightarrow{H} H$ $H \xrightarrow{H} H$ H H H H H H H H H		missing Hs and bonds	1

(d)	M1 – incomplete combustion/insufficient oxygen	lack of oxygen /less oxygen / <u>only</u> 1½ oxygen (in equation)	
	M2 – toxic/poisonous/causes death IGNORE dangerous/harmful		1
	M3 – reduces the capacity of the blood to carry oxygen	correct references to haemoglobin	1
	IGNORE blood carries no oxygen	/blood carries less oxygen/blood does not release oxygen as easily	1

(Total marks for Question 2 = 11 marks)

Question number	Answer	Accept	Reject	Marks
3 (a)	large hydrocarbons/alkanes/molecules become small ones	(large) hydrocarbons or alkanes or molecules become small <u>er</u> ones	references to polymers	1
	IGNORE references to forming alkenes/ethene/ more useful molecules	long chains become short chains		
(b)	M1 – (add to) bromine (water)/Br ₂ IGNORE Br	(acidified) potassium manganate(VII)		1
	M2 – (bromine) decolourised/turns colourless			1
	IGNORE starting colour and clear	decolourised/turns colourless		
	M2 dep on M1, but can be scored for a near miss in M1, eg Br or bromide (water)			
(c)	M1 – (catalyst) silica / silicon dioxide / alumina / aluminium oxide	correct formula aluminosilicate / zeolite		1
	N.B. if both name and formula given, mark the name only			
	M2 – 600-700 °C	any value or range within this range equivalent temperatures in Kelvin		1

(Total marks for Question 3 = 5 marks)

Question number	Answer	Accept	Reject	Marks
4 (a)	M1 (molecules/compounds/substances) with the same <u>molecular</u> formula/number of each type of atoms	hydrocarbons	elements/atoms general formula/empirical formula for M1 only	1
	IGNORE chemical formula/same compound	atoms arranged differently		1
	M2 (but) different structural formulae/different displayed formulae/different structures	,		
(b)	D			1
(c) (i)	M1 C _n H _{2n}	letters other than n,	C _n +H _{2n}	1
(ii)	M1 double bond between two left hand end carbon atoms	c.y.		1
	M2 single bond between each pair of rest of carbon atoms			
	Penalise max 1 mark for any extra bond shown			
(d)	M1 addition	additional		1
	M2 orange	yellow/brown	red, either on its own or in combination with	1
	M3 colourless IGNORE clear/transparent/looks like water		any other colour	1
(e)	M1 saturated – <u>all</u> (carbon to carbon) bonds are single /contains <u>only</u> (carbon to carbon)	does not contain any multiple/double bonds	5	1

single bonds		-
		T
M2 unsaturated - contains (carbon to carbon) double/multiple bond(s)		
	Total	11

Question number		ion ber	Answer	Notes	Marks
5	(a)	(i)	CH ₄	Accept H ₄ C	
		(ii)	C_2H_6	Accept H ₆ C ₂	1
		(iii)	CH ₃ CH ₂ CH ₃	Accept CH_3 - CH_2 - CH_3 / H_3C - CH_2 - CH_3	1
		(iv)	Н Н Н Н H—C—C—C—C—H Н Н Н Н		1

(1)	(1)			
(b)	(i)	alkane(s)		1
	(ii)	C _n H _{2n+2}	Accept x and other letters in place of n Accept answers like C _n H _{2n} +2 Ignore brackets that still give same answer	1
	(iii)	similar chemical properties / characteristics / reactions / behaviour	Accept 'same chemical properties' but ignore a specific example, eg all react with oxygen	
		same functional group		
		(neighbouring members) differ by CH_2	Accept 'methylene group'	
		gradation/gradual change/trend in physical properties	Accept gradation/gradual change/increase/decrease in specified property, eg boiling point Reject same / similar physical properties	
			Accept any two for 1 mark each Accept two answers in lines 1 or 2	2

5	(c)	(i)	$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	All formulae correct Ignore balanced nitrogen on both sides	1
				Ignore state symbols Accept fractions and multiples	1
		(ii)	carbon / C	Accept soot Ignore graphite Reject coke	1
			carbon monoxide / CO		1
				Award 1 for both correct	
				answers in wrong order	

Question number	Answer	Notes	Marks
5 (d)	$\begin{array}{c ccccccc} H & H & H & H \\ I & I & I & I \\ H & I & I & I \\ H & -C - C - C - C - H \\ I & I & H \\ H & H \\ H & -C - H \\ H \\ H \\ H - C - H \\ H \\ H - C - H \\ H \\ H - C - H \\ H \\ H \\ H - C - H \\ H$	Accept in either order Award 1 mark for two correct isomers as structural formulae Award 1 mark for two correct isomers as skeletal formulae Ignore names	1

(e)	(i)	UV (light) / ultraviolet (light)	Accept sunlight Ignore ref to temperature	1
	(ii)	bromomethane	Accept 1-bromomethane / methyl bromide / monobromomethane Ignore hyphens / spaces	1
	(iii)	$CH_4 + Br_2 \rightarrow CH_3Br + HBr$	Award M1 for CH ₃ Br Award M2 for other formulae and correct balancing Max 1 for error in symbol e.g. BR, br Ignore state symbols	1 1
			Accept further bromination in (ii) and (iii)	

Total 18 marks