Alkanes Mark Scheme 5

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Торіс	Organic Chemistry
Sub-Topic	Alkanes
Booklet	Mark Scheme 5

Time Allo	wed:		36 minute	S				
Score:			/30					
Percentage:			/100					
Grade Bo	undaries:							
9	8	7	6	5	4	3	2	1
>90%	80%	70%	60%	50%	40%	30%	20%	10%

1 (a) (i) M1 (compounds/molecules with the) same molecular formula /same number of each type of atom Ignore references to chemical/general/empirical formula 2 1 (a) (i) M1 (compounds/molecules with the) same molecular formula /same number of each type of atom Ignore references to chemical/general/empirical formula 2 1 (a) (i) M2 but different displayed formula / structures / arrangement of atoms Ignore references to isomers in different order 2 1 (a) (i) M2 (interpretent displayed formula / structures / arrangement of atoms Ignore references to stereoisomerism 2	Question number	Answer	Notes	Marks
M2 but different displayed formula / structural formula / structures / arrangement of atoms Ignore atoms in different order Ignore references to stereoisomerism	1 (a) (i)	M1 (compounds/molecules with the) same molecular formula /same number of each type of atom	Ignore references to chemical/general/empirical formula If use elements/atoms instead of compounds/molecules can score M2 only Allow reference to isomers in question ie have same number of carbon and hydrogen (atoms as each other)	2
		M2 but different displayed formula / structural formula / structures / arrangement of atoms	Ignore atoms in different order Ignore references to stereoisomerism	
(II) $ \begin{array}{ c c c } H & H & H & H \\ H & I & I \\ H & -C - C = C \\ H & H \\ H & -C - C = C \\ H & H \\ H & H$	(ii)	HHHHHIIIHIIIHHHHHHHHHIHHH <th>Accept structure of trans but-2-ene Ignore bond angles</th> <th>1</th>	Accept structure of trans but-2-ene Ignore bond angles	1

Question number	Answer	Notes	Marks
(iii)	M1 (Reagent) – bromine (water)	accept decolourised Ignore clear/discolours	3
	M2 (But-1-ene) – goes (from orange) to colourless	accept stays orange ignore no reaction	
	M3 (cyclobutane) – no change (unless UV light present)	If start with bromine (water) in presence of UV light then scores 0/3	

(b) (i)	Н Н Н Н H-C-C-C-H H ОНН Н	Allow -O-H and -OH but not -HO	1
	OR		
	Н Н Н Н H - C - C - C - C - H OH H H H		
(ii)	$ \begin{pmatrix} H & H \\ C & I \\ C_{2}H_{5} & I \\ n \end{pmatrix} $		2
	M1 correct formula of repeat unit (with carbon to carbon single bond)	Accept displayed C_2H_5	
		Accept C ₂ H ₅ on either C Allow if more than one monomer correctly joined together	
	M2 brackets <u>and</u> continuation bonds <u>and</u> n	Accept n anywhere after brackets but not before	
		M2 dep on M1or near miss	

Question number		on er	Answer	Notes	Marks
2	а	i	C (C ₂ H ₄)		1
		ii	B (colourless)		1
		iii	A (dehydration)		1
	b	i	cracking		
		ii	(to act as a) catalyst OR to increase rate / speed up reaction	Accept (to provide an alternative route with) lower activation energy Accept decomposition / cracking in place of reaction	1
		iii	cracking produces 2 or more products OR other products are formed OR	Accept molecules / hydrocarbons /alkanes / alkenes in place of products	1
			identified possible product OR not all decane decomposed OR water vapour present (not just water)	Accept any hydrogen and any hydrocarbon with 8 or fewer carbon atoms (name or formula)	
				Ignore decane decomposes / decane contains impurities Ignore references to air / oxygen / nitrogen / carbon dioxide Accept equation for cracking of decane showing two or more possible products (even if unbalanced)	
				Total	6 marks

Question number		Answer	Notes	Marks
3 (a)	(refinery) gases			1
(b)		bitumen		1
(c) ((i) $C_{18}H_{38} \rightarrow C_8H_{18} + C_{10}H_{20}$ OR $C_{18}H_{38} \rightarrow C_8H_{18} + 2C_5H_{10}$ OR $C_{18}H_{38} \rightarrow C_8H_{18} + 5C_2H_4$ (ii)		1	
		M1 over/greater supply of long chain hydrocarbons/molecules/ heavy/heavier fractions / OWTTE M2 high(er) demand/more use for short-chain/small hydrocarbons/ light/lighter fractions/ OWTTE	Accept reverse argument eg not enough short chain hydrocarbons	2
		M3 reference to a use eg the alkenes produced can be used to make polymers/plastics / eg the short- chain (saturated) hydrocarbons used as fuels	Accept specific alkene and product eg ethene to make poly(ethene)/ethanol/alcohol Accept answers in terms of gasoline/petrol / fuel (for cars)	

(d)	$C_8H_{18} + 81/_2O_2 \rightarrow 8CO + 9H_2O$	Allow multiples	2
	M1 correct formula for CO		
	M2 correct balanced equation	Accept balanced equations	
	M2 dep on M1	and/or CO ₂ eg C ₈ H ₁₈ + 6.5O ₂ \rightarrow 4CO + 4C + 9H ₂ O	

Question number		ion ber	Answer	Accept	Reject	Marks
	4 (a)		it /gasoline is used (as a fuel) for cars	there are more cars than ships	Any other wrong use, eg domestic heating,	1
			ignore references to uses of fuel oil and gasoline burning better		aeroplanes, ships, etc	
	(b)	(i)	C_4H_8	2C ₂ H ₄		1
		(ii)	Catalyst - silica / silicon dioxide / silicon(IV) oxide / alumina / aluminium oxide	zeolite(s) / aluminosilicates		1
			Temperature – 600 – 700(°C)			1
			If more than catalyst given, all must be correct	Any temperature or any range within 600- 700(°C) Equivalent		
				temperatures in Kelvin		

Question number	Answer	Accept	Reject	Marks
number 4 (c) (i) (ii)	Cracking – any two from: • continuous process • pure(r) product • fast(er) process • takes place on large(r) scale • high(er) percentage yield • 100% atom economy ignore references to cost Fermentation – any two from: • sugar is a renewable resource / uses a renewable resource • country has suitable climate/ enough land to grow sugar cane / plentiful supply of sugar (cane)		reusable resource	2
	 (ethanol produced) suitable for making alcoholic drinks / vinegar takes place at lower temperature / uses less energy ignore references to cost 			
			Total	8