Alcohols Mark Scheme 3

Level	IGCSE(9-1)
Subject	Chemistry
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2C)
Торіс	Organic Chemistry
Sub-Topic	Alcohols
Booklet	Mark Scheme 3

Time Allo	wed:		64 minutes					
Score:			/53					
Percentage: /100								
Grade Bo	Grade Boundaries:							
9	8	7	6	5	4	3	2	1
>90%	80%	70%	60%	50%	40%	30%	20%	10%

Q	uesti numb	on er	on Answer		Notes	Marks
1	(a)		B (a pressure of 65 atm)			1
	(b)		DisplayetheneHHC = CHHethanolHHHHHHHHH	/ed formula /H `H -O-H	All atoms and bonds must be shown Ignore bond angles	2

Question number		on er	Answer	Notes	Marks
1	(c)		 M1 (saturated because) there are only single bonds / all the bonds are single M2 (not a hydrocarbon) because it contains oxygen/another element 	Accept no double bonds / no multiple bonds Accept contains an OH group / an alcohol group Accept does not contain only hydrogen and carbon	2
	(d)		 Any three of the following: M1 correct statement about connection between crude oil and ethene, eg: crude oil is converted /fractionally distilled /cracked to obtain ethene M2 correct statement about connection between sugar cane or glucose and ethanol, eg: sugar/glucose is converted into ethanol / sugar/glucose fermented to make ethanol M3 correct statement about effect of crude oil being less available, eg: less ethene available /ethene more expensive / ethene production (more) difficult OR process 1 used less / less favoured / (more) expensive 	Ignore references to time taken to obtain ethene or ethanol Ignore references to purity of ethene or ethanol Ignore references to global warming / finite and renewable resources	3

M4 correct statement about effect of climate change, eg: more sugar can be fermented / more ethanol can be produced / ethanol cheaper / ethanol production easier/easy OR process 2 used more / more favoured / less expensive		
	Total for Question 1	8

Question number	Answer	Accept	Reject	Marks
2(a)(i)	fermentation			1
(ii)	(to provide the) catalyst/enzyme/zymase	to increase the rate of the reaction		1
(b)(i)	M1 (test) – flame test	suitable description of flame test		2
	M2 (observation) – brick red / orange-red	red		
(ii)	copper(II) ions:	accept other suitable alkalis		5
	M1 (test) – (aqueous) sodium hydroxide / NaOH	suitable alternatives to precipitate	all other colours	
	M2 (observation) – blue precipitate ignore shades of blue			
	M2 dep on M1 or near miss of formula, eg Na(OH) ₂			
	sulfate ions:	(dilute) nitric acid / HNO $_3$	Reject sulfuric	
	M1 (test) – (dilute) hydrochloric acid / HCl	(aqueous) barium nitrate /	acid for M1 only	
	M2 (test) - (aqueous) barium chloride / BaCl ₂	Ba(NO ₃) ₂		
	M3 (observation) – white precipitate			
	M3 dep on M2 or near miss			

Question number	Answer	Accept	Reject	Mark s
2 (c)	 M1 (pressure) – 60-70 atm M2 (catalyst) – phosphoric acid / H₃PO₄ ignore references to concentration 	any pressure or range within this range phosphoric(V) acid	any other oxidation state	2
(d)	 M1 (Σ bonds broken) 348 + 412 + 360 (= 1120) M2 (Σ bonds made) 612 + 463 (= 1075) 	3231 3186		4
	M3 M1 – M2 / Σ bonds broken – Σ bonds made			
	M4 (+)45 (kJ/mol)			
	Correct answer with no working scores 4			
	– 5 (kJ/mol) scores 3			

Total 15 marks

Question number		ion Der	Answer	Accept	Reject	Mar ks
3	(a)		$C_{12}H_{22}O_{11} + H_2O \rightarrow 2C_6H_{12}O_6$ Ignore yeast		lower case symbols and numbers not given as subscripts	1
	(b)	(i)	no more bubbles/fizzing/effervescence IGNORE when no more ethanol is formed/all the glucose has reacted/all the yeast has reacted/references to mass/references to temperature	no more gas/carbon dioxide given off		1
		(ii)	filtration/filtering IGNORE sieving	decant	evaporation/distillation	1
	(c)	(i)	(the elements of) water removed	H ₂ O removed 2 hydrogen (atoms) and 1 oxygen (atom) are removed		1
		(ii)	aluminium oxide/Al ₂ O ₃	(concentrated) sulfuric acid (concentrated) phosphoric acid	dilute acid phosphorus/phosphorous	1
		(iii)	chlorine (gas) / Cl ₂ If both name and formula given, both must be correct	correct name or formula as part of an equation	chloride / Cl [–]	1
		(iv)	$CH_2CICH_2CI \rightarrow CH_2(=)CHCI + HCI$	$C_2H_4Cl_2$ for CH_2ClCH_2Cl and		1
L						

Question	Answer	Α	Reject	Marks
(d) (i)				
	ң сі			1
	нн			
	IGNORE bond angles and positions of H and Cl			
	relative to each other			
(ii)	Any three from:			3
	M1 - (one bond in the) double bond breaks			
	M2 - small molecules/monomers/chloroethene			
	molecules join together			
	M3 - to form a (long) chain/macromolecule			
	M4 - product/polymer contains only single bonds			
			Total	11

Question number	Answer			Notes	Marks
4 (a)	Statement	Fractional distillation	Cracking	1 mark for each line correct	5
	Crude oil is	(√)			
	A catalyst may be		✓		
	Alkenes are		\checkmark		
	Decomposition reactions		\checkmark		
	Fuels are obtained	~	~		
	Separation is the main purpose	~			
(b)	$C_{5}H_{12}$			Accept H ₁₂ C ₅	1
i	H H H H H H—C—C—C—C—C— H				1
ii	C_5H_{12}			Accept H ₁₂ C ₅	1
i iv	pentane				1
v	C_nH_{2n+2}			Accept x and other letters in place of n Accept answers like C _n H _{2n} + 2 Ignore 2(n+1)	1

www.igexams.com

Questio numbe	estion Answer Mer		Notes	Marks
4 (c)	i	(products) 2 2 (oxygen 3)	M1 and M2 independent	1 1
	ii	4 electrons shared between 2 (carbon) atoms 4 electron pairs between 2C and 4H atoms	Ignore inner electrons even if wrong Ignore number of hydrogen atoms	1 1
			Accept all permutations of dots and crosses Ignore intersecting circles Accept H atoms at all angles At least one C or one H atom must be Habeabled if not Max 1 if more than 2 C Maxms if wrong number of electrons in outer shell of any atom	
(d) i		phosphoric acid / H ₃ PO ₄ any value in range 250 – 350 ° C	Ignore concentrated / dilute Accept value without unit Accept 523 – 623 <u>K</u> Marks independent	1 1
	ii	20 (mol) M1 × 24		1
		480 (dm ³)	Accept 480 000 \underline{cm}^{3} If M1 incorrect but 480 is final answer, then only M3 can be awarded If no answer to amount of ethene, then 20 x 24 = 480 scores M2 and M3	1
			Total	19